

Manufacturing Excellence Since 1931

pressure • temperature • test & data • air quality

flow • level • process control • valves

2021

dwyer-inst.com

HVAC

- · Building Automation
- · Test Equipment
- Critical Environments
- Original Equipment (Chillers, Boilers, Air Handlers, Cooling Towers)
- Valve Automation

PROCESS AUTOMATION

- · Water and Wastewater
- Pharmaceutical
- · Agriculture and Livestock
- · Powder and Bulk
- Industrial Process
- · Mining and Heavy Earth Moving
- · Oil, Gas and Petrochemical
- Power
- Valve Automation

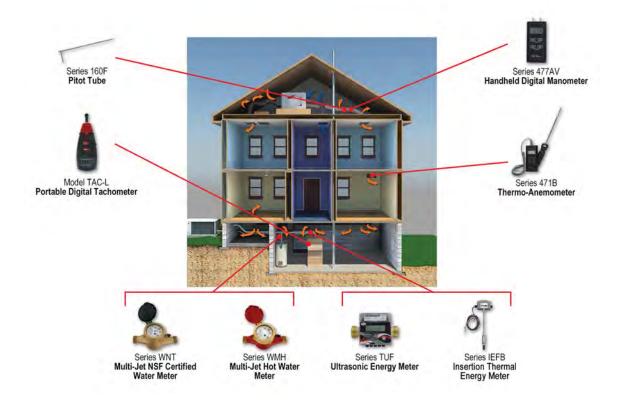
INNOVATION AWARDS

Wireless Hydronic Balancing Kit Series 490W

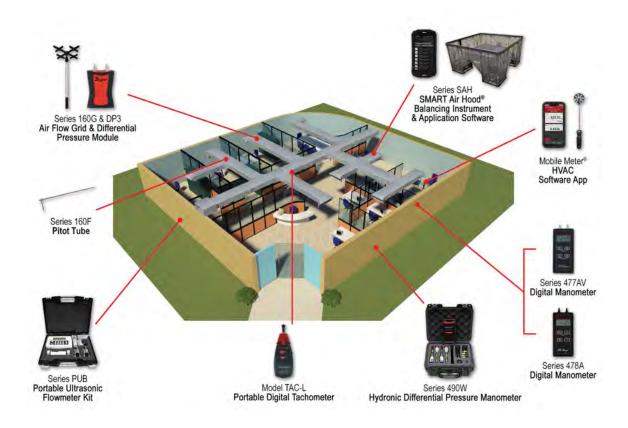
The ACHR News is the leading trade magazine in the heating, ventilating, air conditioning, and refrigeration industries.

GOLD

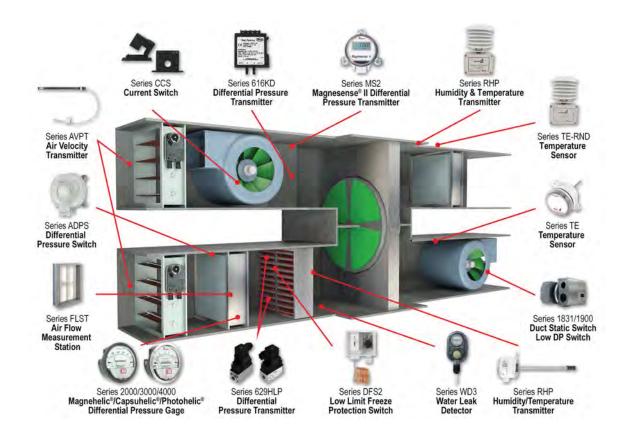
- HVAC Mobile Meter® Software Test Instrument App
- PredictAir[™] Application Software
- Air Velocity Transmitter | Series AVUL

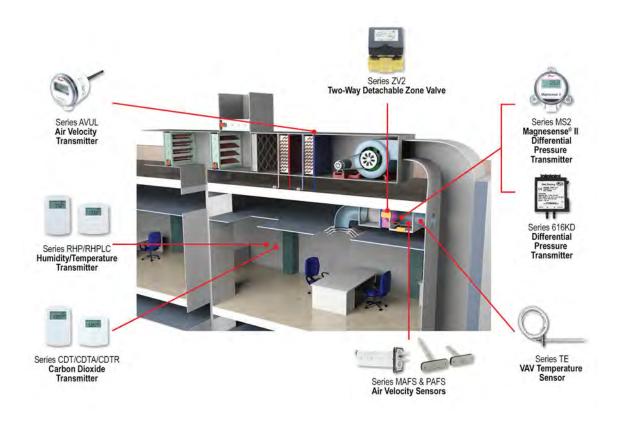

SILVER

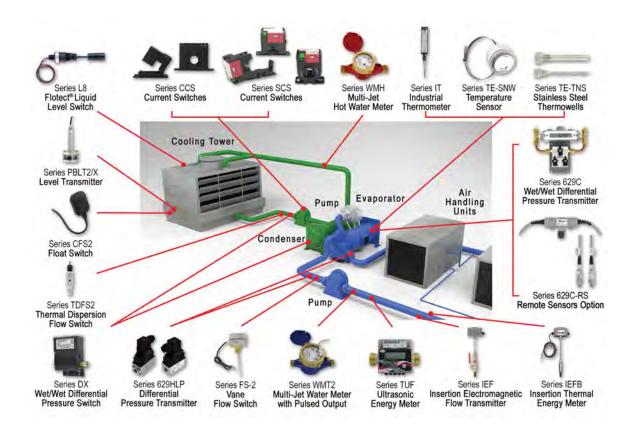
- Universal Handheld Test Instrument | Model UHH2
- Wireless Hydronic Balancing Kit | Series 490W
- · Hydronic Application Software

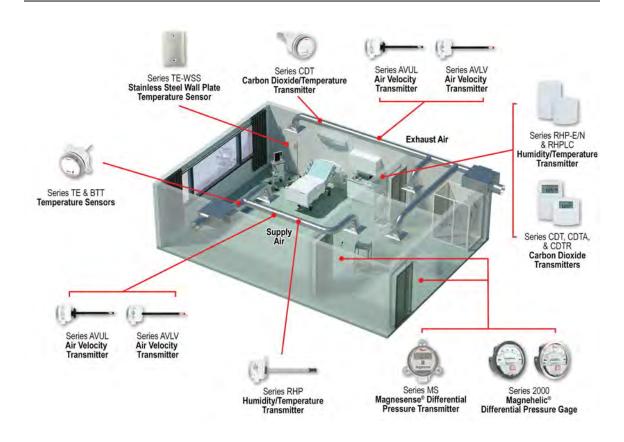

BRONZE

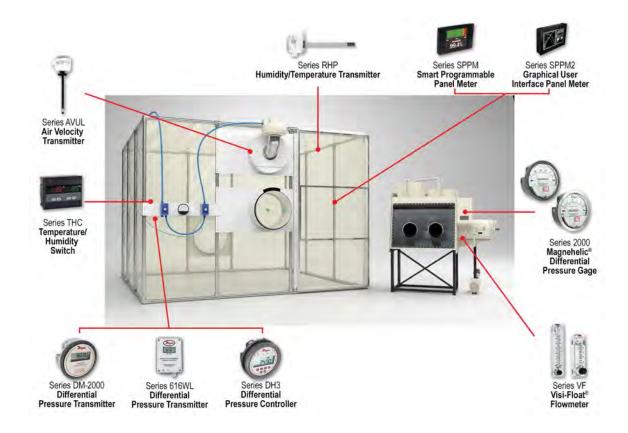
- SMART Air Hood® Balancing Instrument | Series SAH
- Hydronic Differential Pressure Manometer | Series 490A
- Insertion Electromagnetic Flow Transmitter | Series IEF

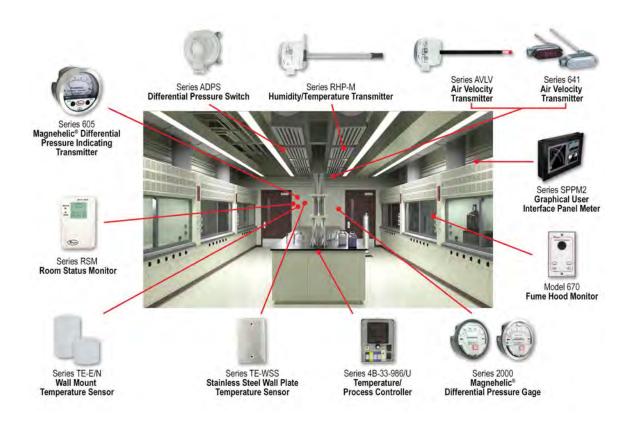

HVAC TESTING

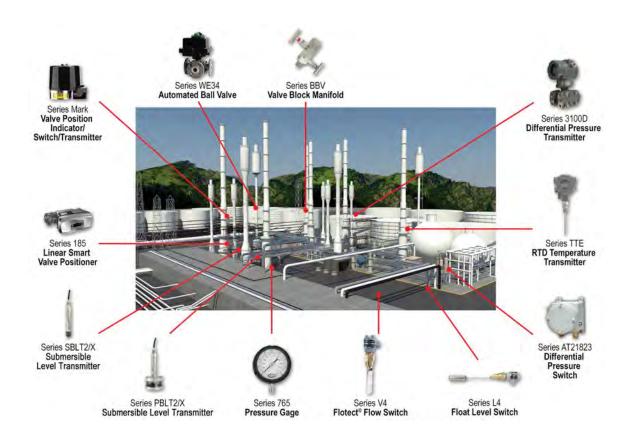

BUILDING BALANCING

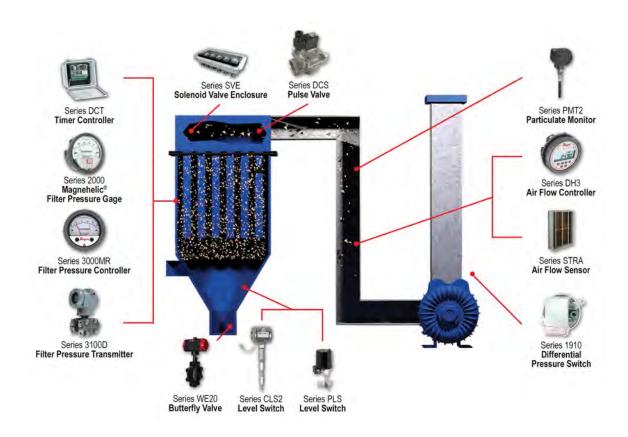

AIR HANDLER

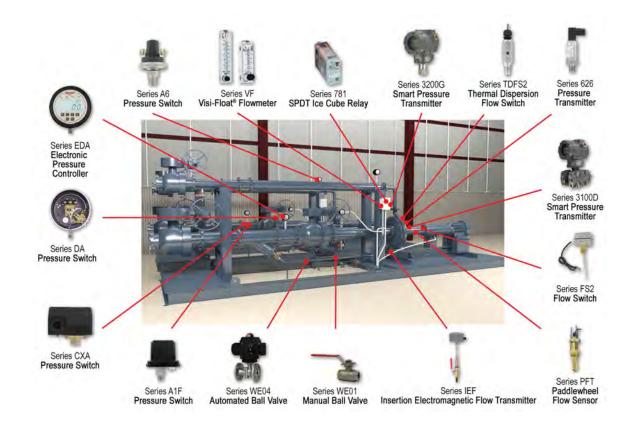

TERMINAL UNIT

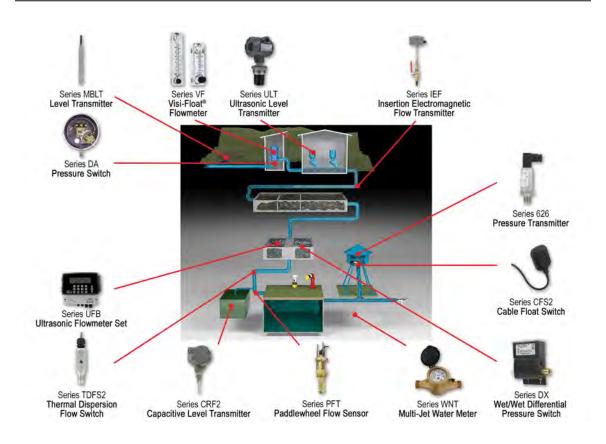

CHILLER PLANT

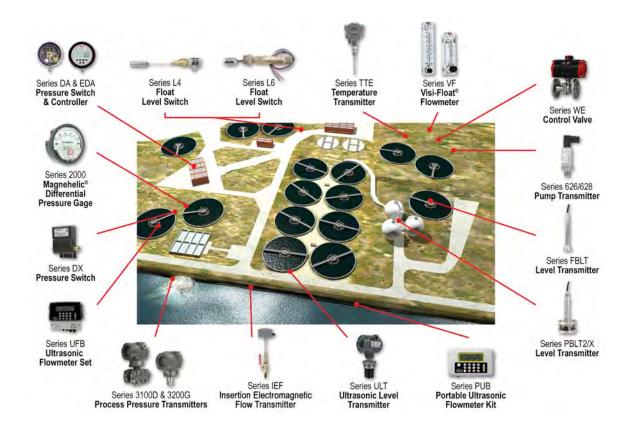

ISOLATION ROOM

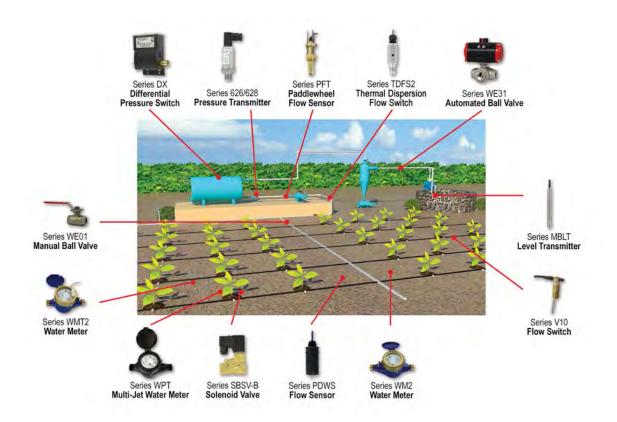

CONTAINMENT CHAMBER/BOX

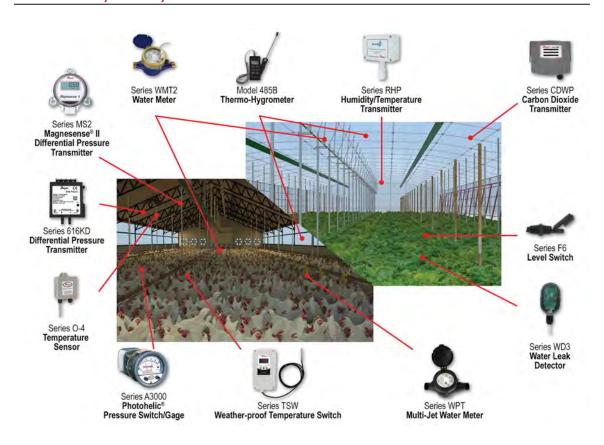

CLEAN ROOM


MIDSTREAM REFINERY/CHEM PLANT


DUST COLLECTOR


PUMP SKID


CLEAN WATER


WASTEWATER

IRRIGATION

POULTRY/HOG/GREENHOUSES

RECENT INNOVATIONS

TEST, ADJUST, AND BALANCE KIT SERIES TABKIT

- Everything a balancing technician needs in a single case
- · Durability, repeatability, and reliability in every instrument
- · Save time by sending everything back to us, we can recalibrate all equipment in the kit

PAGE 163

THERMO-HYGROMETER PROBE, THERMO-ANEMOMETER PROBE & 100 MM VANE THERMO-ANEMOMETER PROBE SERIES RP3/AP3/VP3

- New Bluetooth wireless probes
- · Wirelessly connect directly to your mobile device
- · Used in conjunction with the Dwyer® Mobile Meter® app

PAGE 164

WIRELESS DIFFERENTIAL PRESSURE MODULE SERIES DP3

- Auto-ranging differential pressure module
- · Highly accurate and ideal for low flow applications
- Used in conjunction with the Dwyer® Mobile Meter® app

PAGE 165

PENCIL STYLE AIR VELOCITY TRANSMITTER

SERIES AVPT

- Air velocity ranges from 1000 to 4000 FPM (5 to 20 m/s)
- Insertion lengths of 6 or 12 inches
- Low temperature functionality for outdoor air flow measurement

PAGE 216

AIR VELOCITY TRANSMITTER

SERIES AVLV

- Air velocity ranges from 100 to 400 FPM (0.5 to 2 m/s)
- High accuracy 1 or 2% air velocity measurement device for critical environments
- Analog or BACnet/Modbus® communications simplify device setup

PAGE 217

RECENT INNOVATIONS

CARBON DIOXIDE TRANSMITTER

SERIES CDWP

- Single beam dual wavelength NDIR CO2 sensor automatically corrects for aging effects
- Durable and rugged aluminum housing designed to withstand 168 hour salt spray test
- Ranges include 2,000, 5,000, and 10,000 PPM allowing for use in animal husbandry as well as mechanical rooms utilizing CO2 based refrigerants

PAGE 226

CARBON MONOXIDE TRANSMITTER AND SWITCH

SERIES CMS300

- Field selectable current or voltage analog outputs
- Integral SPDT relay contact for low or high alarm
- Jumper selectable alarm set points of 25, 60, or 150 PPM

PAGE 232

INSERTION ELECTROMAGNETIC FLOW TRANSMITTER **SERIES IEF**

- Field configurable
- · Integral or remote displays allow for ultimate flexibility
- · Multiple display configurations with a single unit

PAGE 292

ULTRASONIC ENERGY METERS

SERIES TUF

- Manufactured to comply with EN1434-1 requirements
- · Compact energy monitoring
- BACnet or Modbus® communication outputs

PAGE 293

INSERTION THERMAL ENERGY METER

SERIES IEFB

- · Field configurable
- · Integral or remote display for ultimate flexibility
- Complies with high accuracy requirements of EN 1434-1, ASTM E3137, CSA C900.1-13 for accurate heat measurement

PAGES 294-295

PRESS	PRESSURE								
1	Table of Contents								
2-15	Selection Guides								
16-17	Typical Applications								
18-19	Pressure Sensor Accuracy								
20-108	Product Pages								

TEMPERATURE 109-148 109 Table of Contents

110-111 Selection Guides112-113 Typical Applications114-148 Product Pages

TEST & DATA 149-200

149 Table of Contents
150-153 Selection Guides
154-155 Typical Applications
156-161 HVAC Measurement Guide
162-200 Product Pages

AIR QUALITY 201-234

201 Table of Contents
202-203 Selection Guides
204-205 Typical Applications
206-234 Product Pages

FLOW 235-298

Table of Contents
236-241 Selection Guides
242-244 Typical Applications
Technical Information
246-298 Product Pages

LEVEL 299-340

Table of Contents
Selection Guides
Typical Applications
Product Pages

PROCESS CONTROL

341 Table of Contents
342-345 Selection Guides
346-347 Typical Applications
348-376 Product Pages

VALVES

377-446

377 Table of Contents
378-381 Selection Guides
382 Typical Applications
383 Technical Information
384-446 Product Pages

ACCESSORIES

447-455

341-376

447 Table of Contents448-455 Product Pages

TECH GUIDE

456-461

456-457 Glossary
458-460 Reference Tables

461 Trademark Acknowledgments

INDEX

462-476

462-467 Index - By Product468-476 Index - By Category

STANDARD TERMS & CONDITIONS OF SALE

DWYER INSTRUMENTS, INC. - TERMS AND CONDITIONS OF SALE - MARCH 15, 2017

- Prices and Specifications are subject to change without notice.
- Shipping dates are approximate. They are dependent upon credit approval and subject to delays beyond our control.
- Terms: Net 30 days to companies with established credit rating. In the event Buyer fails to fulfill previous terms of payment, or in case Seller shall have any doubt at any time as to Buyer's financial responsibility, Seller may decline to make further deliveries except upon receipt of cash in advance or other special arrangements.
- Point and Title: All material is sold EXW Ex Works Dwyer Instruments, Inc. Title to all material sold shall pass to buyer upon delivery by Seller to carrier at shipping point.
- State and Local Taxes: Any taxes which the Seller may be required to pay or collect upon or with respect to the sale, purchase, delivery, use or consumption of any of the material covered hereby shall be for the account of the Buyer and shall be added to the purchase price.
- Special tooling, dies, silk screens and molds acquired specially to produce goods for Buyer remain the property of Dwyer Instruments, Inc., and may not be removed. They will be maintained in good condition for a minimum period of three years from the date of the original purchase order.
- Trade Compliance: Buyer acknowledges that the products, software, and technology, including technical information and documents (collectively "Items"), of Dwyer Instruments, Inc., are subject to regulation by agencies of the U.S. government including, but not limited to, the U.S. Department of Commerce. Buyer shall comply with the Export Administration Regulations (EAR) and all applicable U.S.laws and regulations regarding the sale, delivery and transfer of said Items. Buyer shall not, without first obtaining the required licenses, authorizations or approvals from the appropriate U.S. government agency; (i) export, re-export, transfer or divert any Item directly or indirectly to any country or national resident thereof, or any person, entity or country that has restrictions imposed upon them by the U.S. government, (ii) engage in, or knowingly sell to any party engaged in activity related to the development, production, use, testing, or maintenance of Weapons of Mass Destruction, including uses related to nuclear, missile, chemical or biological warfare, or (iii) engage in, or knowingly sell to any party engaged in activity related to the development, production, use, or maintenance of any safeguarded or unsafeguarded nuclear fuel facility or components for such facilities. Buyer shall fully cooperate with Seller, without charge, in any official audit or inspection by an authorized agent, official, employee, or accredited representative of the U.S. government. Buyer shall indemnify and hold Seller harmless from, or in connection with, any violation of this Section by Buyer, its employees, consultants, agents, or customers. The obligations, requirements and claims described herein shall survive the expiration of any business relationship with Dwyer Instruments, Inc., including its divisions, subsidiaries and affiliated companies.
- Distribution: Products sold to any entity located in the U.S. must remain in the U.S. unless a Global Distribution Agreement is in force with said entity. OEM's are excluded from this requirement. Those who violate this term are subject to a reduction of discount, loss of discount, or exclusion from purchasing future products. If you want to be a Global Distributor, please contact your Global Sales Manager in your region.
- Limited Warranty: The Seller warrants all Dwyer instruments and equipment to be free from defects in workmanship or material under normal use and service for a period of one year from date of shipment. Products qualifying for an extended warranty period will have the extended warranty as expressly indicated on the catalog page, web page, IOM, or will be covered by a specific written agreement that is (i) approved by an officer of Dwyer Instruments, Inc. and (ii) defines the warranty period. If no express statement of extended warranty is made, then the standard 1 year warranty applies. The Extended Limited Warranty only applies to products manufactured after April 1, 2017. The Warranty period extends from the date of shipment to the initial customer and not the project installation date or use.

Specific warranty exclusions include, but are not limited to:

- Specific product components not covered by the extended warranty:
 - o Humidity Sensors
 - o Batteries
 - o Electro-Chemical Gas Sensors
 - o Snap Switches
 - o Any component which exceed its normal life cycle
 - o Other Specific items added as required.
- Normal or excessive wear and tear is not cause for warranty replacement.
- · Products not properly maintained, operated, installed, or use in an application not suited for the product.
- Modifications, alterations, changes, or additions outside those which are required for normal operation.
- · Failure to notify Dwyer of any defect within a reasonable time.
- Damage which the customer has not taken timely action to minimize or mitigate.
- · Products on which the labels, markings, nameplates, etc. have been tampered with.
- · Products which contain broken factory seals or have been tampered with shall void warranty.

Liability under this warranty is limited to repair or replacement EXW Ex Works Dwyer Instruments, Inc. of any parts which prove to be defective within that time or repayment of the purchase price at the Seller's option. All products must be returned to the Seller, transportation prepaid, unless other arrangements have been pre-approved by Seller. All technical advice, recommendations and services are based on technical data and information which the Seller believes to be reliable and are intended for use by persons having skill and knowledge of the business, at their own discretion. In no case is Seller liable beyond replacement of equipment EXW Ex Works Dwyer Instruments, Inc. or the full purchase price. This warranty does not apply if the maximum ratings label is removed or if the instrument or equipment is abused, altered, used at ratings above the maximum specified, or otherwise misused in any way.

THIS EXPRESS LIMITED WARRANTY IS IN LIEU OF AND EXCLUDES ALL OTHER REPRESENTATIONS MADE BY ADVERTISEMENTS OR BY AGENTS AND ALL OTHER WARRANTIES, BOTH EXPRESS AND IMPLIED. THERE ARE NO IMPLIED WARRANTIES OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE FOR GOODS COVERED HEREUNDER.

- 10. Buyer's Remedies: THE BUYER'S EXCLUSIVE AND SOLE REMEDY ON ACCOUNT OF OR IN RESPECT TO THE FURNISHING OF NON-CONFORMING OR DEFECTIVE MATERIAL SHALL BE TO SECURE REPLACEMENT THEREOF AS AFORESAID. THE SELLER SHALL NOT IN ANY EVENT BE LIABLE FOR THE COST OF ANY LABOR EXPENDED ON ANY SUCH MATERIAL OR FOR ANY SPECIAL, DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES TO ANYONE BY REASON OF THE FACT THAT IT SHALL HAVE BEEN NON-CONFORMING OR DEFECTIVE.
- 11. Acceptance: All orders shall be subject to the terms and conditions contained or referred to in the Seller's quotation, acknowledgment, and to those listed here and to no others whatsoever. By placing an order you accept our terms and conditions. No waiver, alteration or modification of these terms and conditions shall be binding unless in writing and signed by an executive officer of the Seller. All orders are subject to written acceptance by Dwyer Instruments, Inc., Michigan City, Indiana, U.S.A.

TYPICAL APPLICATIONS pages 204-205

FEATURED PRODUCTS

AIR VELOCITY TRANSMITTER

SERIES AVLV | page 217

- Field selectable ranges from 0 to 400 FPM (0 to 2 m/s).
- 1% or 2% accuracy
- Optional BACnet MS/TP or Modbus® RTU/ASCII communication protocol

Modbus® is a registered trademark of Schneider Automation, Inc.

CARBON MONOXIDE TRANSMITTER AND SWITCH SERIES CMS300 | page 232

- Field selectable current or voltage analog outputs
- Integral SPDT relay contact for low or high alarm
- Jumper selectable alarm set points of 25, 60, or 150 PPM

AIR VELOCITY

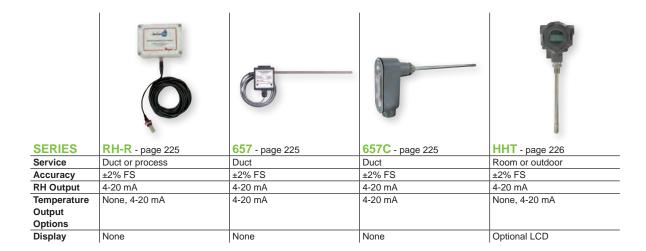
	Series ALL		Series All	641		
SERIES	AVUL - page 215	AVPT - page 216	AVLV - page 217	641 - page 218	641RM - page 219	641B - page 219
Service	Clean air	Clean air	Clean air	Clean air	Clean air	Clean air
Range	1,000 to 4,000 FPM	1,000 to 4,000 FPM	100 to 400 FPM	250 to 15000 FPM	250 to 2000 FPM	250 to 2000 FPM
	(5 to 20 MPS)	(5 to 20 m/s)	(0.5 to 2 m/s)	(1.25 to 75 MPS)	(1.25 to 10 MPS)	(1.25 to 10 MPS)
Accuracy	±3 or 5% of reading	±3 or 5% of reading	±1 or 2% of reading	±3 to 4% FS	±3 to 4% FS	±5 to 6% FS
Mounting	Duct mount	Duct mount	Duct mount	Duct mount	Remote mount	Duct mount
Probe Length	7-41/64"	6" or 12"	7-41/64"	6 to 36" (152 to 915 mm)	6 to 36" (152 to 915 mm)	4-1/4" (108 mm)
Output	4-20 mA, 0-5 VDC, or 0-10 VDC selectable	0-5 VDC or 0-10 VDC	4-20mA, 0-5 VDC, or 0-10 VDC selectable	4-20 mA	4-20 mA	4-20 mA
Display	Optional LCD	None	Optional LCD	Optional LED	Optional LED	Optional LED
Process	32 to 122°F	-4 to 140°F	-32 to 122°F	-40 to 212°F	-40 to 212°F	-40 to 176°F
Temperature	(0 to 50°C)	(-20 to 60°C)	(0 to 50°C)	(-40 to 100°C)	(-40 to 100°C)	(-40 to 80°C)
Limits						

HUMIDITY & HUMIDITY/TEMPERATURE

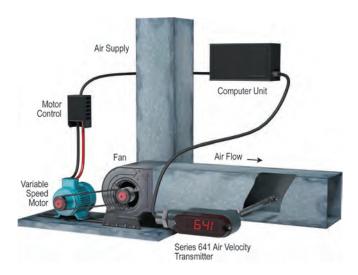
Transmitters

	רבי		Service (1)	RHP with Shield	
SERIES	RHP-E/N - page 221	RHPLC - page 222	RHP - page 223	- page 224	WHT - page 224
Service	Room	Room	Duct or outdoor	Outdoor	Room or outdoor
Accuracy	±2, 3, or 5% FS	± 2 or 3% FS	±2, 3, or 5% FS	±2, 3, or 5% FS	±3% FS
RH Output	4-20 mA, 0-5 VDC, 0-10 VDC	4-20mA, 0-5 VDC, 0-10 VDC	4-20 mA, 0-5 VDC, 0-10 VDC	4-20 mA, 0-5 VDC, 0-10 VDC	4-20 mA, 0-5 VDC, 0-10 VDC
Temperature	None, passive sensor, 4-20	None, passive sensor,	None, passive sensor, 4-20	None, passive sensor, 4-20	None, passive sensor, 4-20
Output	mA, 0-5 VDC, 0-10 VDC	4-20mA, 0-5 VDC, 0-10 VDC	mA, 0-5 VDC, 0-10 VDC	mA, 0-5 VDC, 0-10 VDC	mA, 0-5 VDC, 0-10 VDC
Options					
Display	Optional LCD	None	None	None	None

These Selection Guides are for quick comparison of similar products. Please refer to the catalog page number referenced for complete product information and specifications.



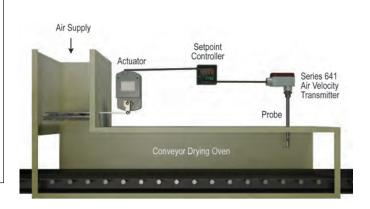
CARBON MONOXIDE


	25		Service (2)		
SERIES	GSTA - page 231	GSTC - page 231	CMT200 - page 232	CMS300 - page 232	
Service	Carbon monoxide or nitrogen dioxide	Carbon monoxide or nitrogen dioxide	Carbon monoxide	Carbon monoxide	
Range	0 to 500 PPM CO or	0 to 500 PPM CO or	0 to 200 PPM CO	0 to 300 PPM CO	
	0 to 10 PPM NO ₂	0 to 10 PPM NO ₂			
Housing	Space or duct	Space or duct	Space	Space	
Output	4-20 mA, 0-5 VDC, 1-5 VDC, 0-10	BACnet MS/TP, Modbus® RTU,	4-20 mA, 2-10 VDC	4-20 mA, 2-10 VDC	
	VDC, 2-10 VDC	Modbus® ASCII			
Relay	None	N/A	N/A	(1) SPDT	
Display	Optional LCD	Optional LCD	N/A	N/A	

HUMIDITY & HUMIDITY/TEMPERATURE

Transmitters

 $\mathsf{Modbus}^{\scriptscriptstyle{(0)}}$ is a registered trademark of Schneider Automation, Inc.


Dwyer® transmitter signals precise air velocity adjustments to computer-controlled variable-speed fan motor

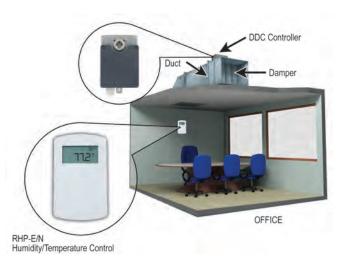
In variable air volume (VAV) HVAC systems, a computerized control provides precise adjustment of air volume to meet changing system needs with maximum energy efficiency. The Dwyer® Series 641 has an optional LED display for local indication of air flow. The LED display provides a quick, visual acknowledgment of proper system performance. The computer reacts to any change in velocity by signaling the motor control to increase or decrease fan speed to maintain the required velocity. The computer, taking inputs from other ambient condition sensors, will establish a new required air velocity and signal an appropriate adjustment in fan speed.

Automate your garage ventilation

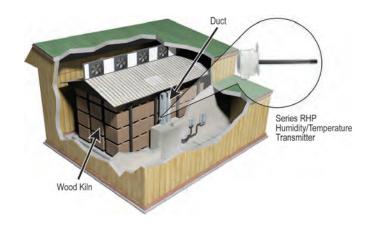
Carbon monoxide and Nitrogen Dioxide are by-products released in the exhaust from gasoline and diesel powered vehicles. These gases can build up in parking garages and loading dock areas where vehicles are concentrated, creating a potentially harmful environment. Ventilation is required to purge these gasses, but running fans non-stop increases building operating costs. The Dwyer® Series GSTA and GSTC can help to offer a more efficient solution to garage ventilation by transmitting CO or NO_2 concentrations via an analog output signal or digital BACnet/Modbus® communication. This signal is sent to the Building Management System and the ventilation processes can then be automated to run only when the gases are present in dangerous concentrations. For stand-alone systems, the analog signal can be sent to a Series SCD process controller to provide a closed loop control system running the ventilation fans. Using the Dwyer® Series GSTA or GSTC transmitter, ventilation will occur only when needed, reducing the cost of maintaining air quality standards.


Air velocity transmitter controls drying oven air flow

The flow of heated air is held to a constant predetermined velocity in this carefully controlled low temperature process drying oven. The constant temperature air supply is modulated by a set of inlet louvers operated by a servo-driven actuator. A Dwyer® Series 641 air velocity transmitter has an optional LED display for local indication of air flow. The LED display provides a quick, visual acknowledgment of proper system performance. The controller compares the Series 641's signal to the set point in the controller and continuously signals appropriate louver adjustments to the actuator.


Eliminate the need for Pitot tubes, orifice plates, differential pressure sensors and temperature sensors with a Series AVUL

Installing air velocity measurement systems can be a burdensome process – specifying Pitot tubes, static pressure tips, orifice plates, differential pressure transmitters, etc. Dwyer offers the Series AVUL air velocity transmitter to consolidate these components into one convenient instrument. The Series AVUL can be easily installed into the duct or air stream to accurately measure air flow while providing local indication as well as linear analog output. Microprocessor-based technology ensures accurate, repeatable results. The Series AVUL combines these features for simple, reliable airflow measurement without the problems associated with complex, traditional systems.


Temperature and humidity measurements used to optimize the growth of hogs and poultry

The Dwyer® Series WHT humidity transmitter and Series O-4 temperature sensors are used to control the environmental conditions on hog and poultry farms. The amount the animals eat is linked to how comfortable the environmental conditions are. Thus the temperature, humidity, amount of light and other ambient conditions are tightly controlled to insure optimal animal growth.

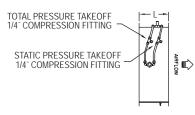
Accurately measure and control the humidity and temperature in office buildings

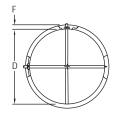
The Dwyer® Series RHP-E/N wall mount humidity and temperature transmitter can be combined with a DDC controller and a damper to provide comfortable working conditions in an office building. The amount of air flow entering the room is varied based on the temperature and humidity readings of the Series RHP-E/N. The compact size and mounting configuration allow this transmitter to be discretely mounted in any room

Greatly reduce the time it takes to dry wood

The Dwyer® Series RHP monitors the humidity and temperature in the return air ducts in wood dehumidification rooms. Large fans are used to circulate air across the room. As dry conditioned air moves across the wood, it absorbs moisture from the wood. The humidity level of the air in the return air duct is representative of how much moisture is in the wood. When the humidity in the duct declines, it signifies that less dry conditioned air is needed to be supplied to the room.

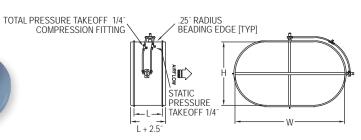

Demand control ventilation

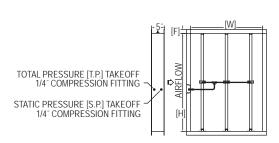

Since the number of people in a conference room or classroom varies throughout the day, the amount of conditioned air needed to properly ventilate the room varies as well. As the number of people in a room increase, the concentration of carbon dioxide in the room will also increase. The Dwyer® Series CDT, CDTR, CDTV, and CDTA carbon dioxide transmitters measures the amount of carbon dioxide that is emitted so that the VAV control system can supply enough fresh air into the space to return the concentration of carbon dioxide in the room to normal levels.



CT MOUNTED AIRFLOW MEASUREMENT STATIONS

Rectangular, Oval or Circular Configurations




DIMENSION	DIMENSIONS - CIRCULAR FLANGE											
Station	Flange	Flange	Casing									
Size "D"	Thickness	Size "F"	Length "L"									
8" - 15"	.064"	1″	6″									
16" - 44"	.064"	1-1/2"	6″									
45" - 72"	.188″	1-1/2"	10″									
73" & over	.188″	2″	12″									

DIMENSIONS - OVAL FLANGE										
Station Width "W"			Casing Length "L"							
Up to 48" Over 48"	.064″ .188″		6″ 8″							

DIMENSIONS - RECTANGULAR FLANGE								
Station Size	Flange							
"H" or "W"	Size "F"							
8" - 72"	1-1/2"							
73" & Over	2"							

The Series FLST Duct Mounted Airflow Measurement Stations utilize an airflow averaging element generating a velocity pressure signal similar to the orifice, venturi, and other primary elements. Single or multiple airflow elements are factory mounted and pre-piped in a casing designed for flanged connection to the ductwork. Multiple elements are joined together for connection to a differential measurement device (gage, transmitter, etc.) for flow measurement and indication purposes.

FEATURES/BENEFITS

- · Low signal-to-noise ratio
- Factory mounted and pre-piped in a flanged duct section (casing)
- Standard construction includes galvanized casing and 6063-T5 anodized aluminum
- Standard airflow stations can be operated (in air) continuously in temperatures up to 350°F or intermittently in temperatures up to 400°F

APPLICATIONS

- · Building air intake and exhaust flow rate measurement
- · HVAC air flow measurement

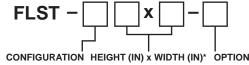
Circular Models

SPECIFICATIONS

Accuracy: Within 2% of actual flow when installed in accordance with published recommendations.

K-Factor: 0.97.

Velocity Range: 100 to 10,000 FPM (0.51-51 m/s).


Wetted Material: Elements: 6063-T5 anodized aluminum; Casings: 16 ga G90 galvanized steel.

Temperature Limits: Galvanized casings and aluminum elements 350°F (177°C) continuous operation (in air) 400°F (204°C) intermittent operation (in air).

Humidity: All airflow stations 0 to 100% non condensing.

Process Connections: 1/4" compression fittings.

Rectangular or Oval Models

R - Rectangular

IM - Internal pressure connections F - Flange for oval mount station

O - Oval

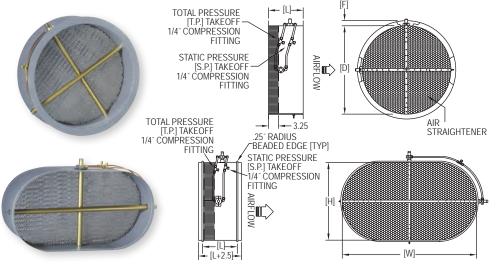
Note: When ordering rectangular or oval flow stations, pressure taps will always be located on the longer of the two dimensions.

*Metric dimensions available upon request.

DUCT MOUNTED AIRFLOW MEASUREMENT STATIONSRectangular, Oval or Circular Configurations

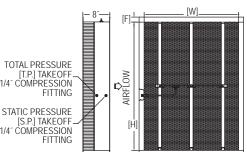
Size	8″	10"	12"	14"	16″	18″	20″	22"	24"	26″	28″	30″	32″	34"	36″
B″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10″		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
12″			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
14″				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
16″					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
18″						Х	Х	Х	Х	Х	Х	Х	Х	Х	X
20″							Х	Х	Х	Х	Х	Х	Х	Х	X
22″								Х	Х	Х	Х	Х	Х	Х	X
24″									Х	Х	Х	Х	Х	Х	X
26″										Х	Х	Х	Х	Х	X
28″											Х	Х	Х	Х	X
30″												Х	Х	Х	X
32″													Х	Х	X
34"														Х	X
36″															X

Note: When ordering rectangular or oval flow stations, pressure taps will always be located on the longer of the two dimensions.


MODEL	CHART -	SERIES	FLST REC	CTANGUL	AR OR C	VAL										
Size	40"	44"	48"	52"	56″	60″	66″	72″	78″	84"	90″	96″	102"	108"	114"	120″
8″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х				
10″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х			
12″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
14"	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
16″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
18″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	X
20″	Х	Х	Х	Х	Х	X	Х	X	Х	X	Х	X	X	X	X	X
22″	Х	Х	Х	Х	Х	X	Х	X	Х	Х	Х	X	X	X	X	X
24"	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	X	X	X
26″	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	X	X	Х	X
28″	Х	X	Х	X	X	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х
30″	X	X	X	X	X	X	X	X	X	X	Х	Х	X	X	Х	X
32″	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	Х	X
34″	X	X	X	X	X	X	X	X	X	X	X	Х	X	X	Х	X
36″ 40″	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
44"	_ X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X X
48"		^	x	X	x	x	x	x	x	X	X	X	X	X	X	x
52"			_ ^	x	x	x	x	x	x	x	x	x	x	x x	x	x
56"				_ ^	x	x	x	x	x	x	x	x	x	x	x	X
60″					^	X	X	x	x	x	x	x	x	x	x	X
66″						_ ^	X	x	x	x	x	x	x	x	x	X
72″							_ ^	X	X	X	X	X	x	x	X	X
78″								^	X	X	X	X	x	x	x	X
84"										X	X	X	X	X	X	X
90″											X	X	X	X	X	X
96″												X	X	X	X	Х
102"													X	Х	X	Х
108"														Х	Х	Х
114"															Х	Х
120″																Х
Note: W	hen order	ing rectan	igular or o	val flow st	ations, pr	essure tap	s will alwa	ays be loc	ated on th	ne longer o	of the two	dimensio	ns.			

OPTIONS	
To order add suffix:	Description
-IM	Internal pressure connections (rectangular stations only)
-F	Flange (oval stations only)
-SS1	316 SS elements with 16 GA galvanized casing
-SS2	316 SS elements with 16 GA 304 SS casing
-SS3	316 SS elements with 16 GA 316 SS casing

MODEL C	MODEL CHART - SERIES FLST CIRCULAR													
Size	8″	10″	12″	14"	16″	18″	20″	22″	24"	26″	28″	32″	36″	40"
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Size	44"	48″	54"	60″	66″	72″	78″	84"	90″	96″	102"	108"	114"	120″
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х


DUCT MOUNTED AIRFLOW MEASUREMENT STATIONSIntegral Flow Straightener, Ideal for Turbulent Measuring Conditions

DIMENSIONS - CIRCULAR FLANGE									
Station Size "D"	Flange Thickness	Flange Size "F"	Casing Length "L"						
8" - 15"	.064"	1″	8″						
16" - 44"	.064"	1-1/2"	8″						
45" - 72"	.188″	1-1/2"	10″						
73" and over	.188″	2″	12″						

DIMENSIONS - OVAL FLANGE (OPTIONAL)						
Station Width "W"		Flange Size	*Casing Length "L"			
Up to 44"	.064"	1-1/2"	8″			
Over 44"	.188″	1-1/2"	10″			
*All oval flow stations without flange have a						
casing length	of 8".					

DIMENSIONS - RE	ECTANGULAR FLANGE
Station Size "H" or "W"	Flange Size "F"
8" - 72" 73" and over	1-1/2" 2"

The Series STRA Duct Mounted Airflow Measurement Stations utilize an airflow averaging element generating a velocity pressure signal similar to the orifice, venturi, and other primary elements. Single or multiple airflow elements are factory mounted and pre-piped in a casing designed for flanged connection to the ductwork.

Multiple elements are joined together for connection to a differential measurement device (gage, transmitter, etc.) for flow measurement and indication purposes. It has been developed with a honeycomb airflow straightening section for use in duct systems having highly turbulent conditions at the point of measurement.

FEATURES/BENEFITS

- Honeycomb airflow straightening section with 1/2 opening by 3"depth
- Low signal-to-noise ratio
- Factory mounted and pre-piped in a flanged duct section (casing)
- · Standard construction includes galvanized casing and 6063-T5 anodized aluminum
- · Standard airflow stations can be operated (in air) continuously in temperatures up to 350°F or intermittently in temperatures up to 400°F

APPLICATIONS

- · Building air intake and exhaust flow rate measurement
- · HVAC air flow measurement

Circular Models

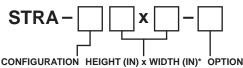
SPECIFICATIONS

Accuracy: Within 2% of actual flow when installed in accordance with published recommendations.

K Factor: 0.97.

Velocity Range: 100 to 10,000 FPM (0.51 to 51 m/s).

Wetted Materials: Elements: 6063-T5 anodized aluminum; Casings: 16 ga G90


galvanized steel, 3003 aluminum air flow straightener.

Temperature Limits: Galvanized casings and aluminum elements 350°F (177°C) continuous operation (in air), 400°F (204°C) intermittent operation (in air).

Humidity Limits: All airflow stations 0 to 100% non condensing.

Process Connections: 1/4" compression fittings.

Rectangular or Oval Models

R - Rectangular O - Oval

IM - Internal pressure connections F - Flange for oval mount station

Note: When ordering rectangular or oval flow stations, pressure taps will always be located on the longer of the two dimensions.

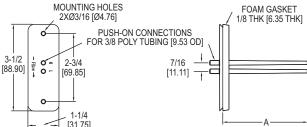
*Metric dimensions available upon request

DUCT MOUNTED AIRFLOW MEASUREMENT STATIONIntegral Flow Straightener, Ideal for Turbulent Measuring Conditions

	CHART -		_			,	1	1	T	1		1	1	T	
Size	8″	10″	12″	14″	16″	18″	20″	22″	24"	26″	28″	30″	32″	34″	36″
8″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10"		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
12″			Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
14"				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
16″					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
18″						Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
20″							Х	Х	Х	Х	Х	Х	Х	Х	Х
22″								Х	Х	Х	Х	Х	Х	Х	Х
24"									Х	Х	Х	Х	Х	Х	Х
26″										Х	Х	Х	Х	Х	Х
28″											Х	Х	Х	Х	Х
30″												Х	Х	Х	Х
32″													Х	Х	Х
34″														Х	Х
36″															Х

Note: When ordering rectangular or oval flow stations, pressure taps will always be located on the longer of the two dimensions.

MODEL	. CHART -	SERIES	STRA RE	CTANGU	LAR OR	OVAL										
Size	40″	44"	48"	52″	56″	60″	66″	72″	78″	84"	90″	96″	102″	108″	114"	120″
8″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
10″	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	X
12″	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	X
14"	Х	X	Х	Х	X	Х	X	X	Х	Х	Х	Х	Х	Х	Х	X
16″	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
18″	X	X	X	Х	X	X	X	Х	X	X	Х	Х	X	Х	Х	X
20″	X	X	X	Х	X	Х	X	Х	Х	X	Х	Х	X	Х	Х	X
22″	X	X	X	Х	X	Х	X	Х	Х	X	X	Х	X	Х	X	X
24"	Х	X	X	Х	X	Х	X	Х	Х	X	Х	Х	Х	Х	Х	Х
26″	Х	X	X	Х	X	Х	X	X	Х	X	Х	Х	Х	Х	Х	Х
28″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
30″	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	X
32″	X	X	X	X	X	X	X	X	X	Х	Х	Х	Х	Х	Х	X
34″	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Х	X
36″	X	X	X	X	X	X	X	X	X	X	Х	X	Х	Х	Х	X
40″	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
44″		Х	X	X	X	X	X	X	X	X	X	X	X	X	Х	X
48″ 52″			Х	X	X	X	X	X	X	X	X	X	X	X	X	X
56″				^	X	X	X	X	X	X	X	X	X	X	X	x
60″					_ ^	X	x x	x	x	X	X	X	X	X	X	x
66″						_ ^	x x	x	x	X	X	X	X	X	X	x
72″							_ ^	x	x	X	x	X	x	ı x	x	x
78″								_ ^	x	X	x	X	x	ı x	x	x
84"									^	X	x	X	x	ı x	x	x
90″										^	x	X	x	x	x	X
96″											^	X	x	x	x	X
102″												^	x	x	x	X
102													^	ı x	x	X
114"														^	x	X
120″															^	X
	/hen order	ing rectar	ngular or c	val flow s	tations or	essure tar	s will alw	avs he loc	ated on the	ne longer (of the two	dimension	15	1		
	- I OI OI GEI	g rectai	igaiai oi c	, vai now a	tations, pr	CCGuic ta	JO WIII GIVV	4,5 00 100	atou on ti	io longer (or the two	41110113101	10.			


OPTIONS	
To order add suffix:	Description
-IM	Internal pressure connections (rectangular stations only)
-F	Flange (oval stations only)

MODEL C	MODEL CHART - SERIES STRA CIRCULAR													
Size	8″	10″	12"	14"	16″	18″	20″	22"	24"	26"	28"	32″	36″	40"
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Size	44"	48″	54"	60″	66″	72″	78″	84″	90″	96″	102″	108″	114"	120″
	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

AVERAGING FLOW SENSORS Ideal for Sensing Fan Flow Rates

The Series PAFS-1000 Averaging Flow Sensors are ideal for sensing velocity pressure in the inlet section of variable air volume terminal units and fan terminal units.

FEATURES/BENEFITS

· Simple mounting flange works with both round or rectangular ducts

APPLICATIONS

- · Zone control in HVAC systems
- · Retrofit HVAC air flow measurement

MODEL CHART								
	Length (Dim. A)		Length (Dim. A)					
Model	in (cm)	Model	in (cm)					
PAFS-1002	3-5/32 (8.02)	PAFS-1007	14-3/4 (37.47)					
PAFS-1003	5-13/32 (13.73)	PAFS-1008	17-1/8 (43.50)					
PAFS-1004	7-21/32 (19.55)	PAFS-1009	19-13/32 (49.29)					
PAFS-1005	9-29/32 (25.26)	PAFS-1010	21-21/32 (55.01)					
PAFS-1006	12-1/2 (31.75)	PAFS-1011	23-29/32 (60.72)					

SPECIFICATIONS

Service: Air and compatible gases.

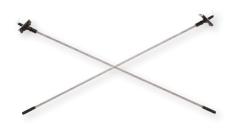
Wetted Materials: ABS/polycarbonate (UL94-5V).

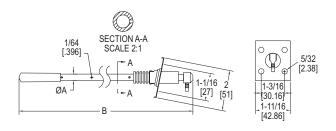
Temperature Limits: Operating: 40 to 120°F (4 to 49°C); Storage: -40 to 140°F

Process Connection: 1/4" (6 mm) ID, 3/8" (10 mm) OD tubing.

Mounting Orientation: Integral flange with gasket.

Weight: 1 oz (28 g).


Agency Approvals: Meets the technical requirements of EU Directive 2011/65/EU


(RoHS II)

SERIES AFG

AVERAGING FLOW GRID

Cost Effective Air Flow Station for Ducts up to 60"

The Series AFG Averaging Flow Grid is a fundamental pressure-sensing device designed to sense velocity pressure in an air duct. When this output is connected to a suitable measuring instrument (i.e. manometer, pressure transducer, etc.) it may be used to determine air velocity or air flow rate.

FEATURES/BENEFITS

- Kit complete with 2 probes and installation hardware
- Trimmable length for any duct size up to 60"
- · Alternative to costly air flow stations

APPLICATIONS

- To display differential pressure, velocity or volume flow using a micro manometer, gage or transmitter
- · To give a warning of over or under flow rate using a pressure switch
- To control air supply in a system by connecting the grid to a pressure transmitter with an electrical output which can be used to feed into a control system
- · To display differential pressure on a simple fluid manometer to give visual indication of changes in volume flow rate in the duct

SPECIFICATIONS

Service: Monitor air or compatible gas flow.

Wetted Materials: 304 SS, PVC, polyurethane, acetyl plastics, and neoprene

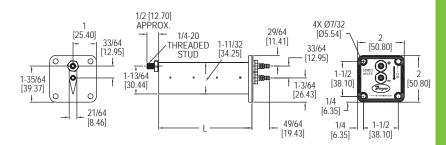
rubber. Accuracy: ±5%.

Maximum Temperature: 176°F (80°C). Velocity Range: 295.2 ft/min to 5904 ft/min (1.5 to 30 m/s).

Diameter of Tubes: 5/16" (8 mm) or 5/8" (16 mm). Maximum Duct Diagonal: 60.4" (153.4 cm).

Maximum Duct Diameter: 59.4" (150.9 cm). Process Connections: 5/16" barbed.

Weight: AFG-1: 1 lb (454 g); AFG-2: 3 lb (1361 g).


MODEL CHART						
	Diameter Tube					
Model	(Dim. A) in (mm)	(Dim. B) in (mm)				
AFG-1	5/16 (8)	27 (688)				
AFG-2	5/8 (16)	59-4/5 (1518)				

METAL AVERAGING FLOW SENSOR Blade Profile Provides Enhanced Performance and Minimal Flow Disruption

The Series MAFS Metal Averaging Flow Sensor is ideal for use with Dwyer Instruments, Inc. precision air velocity gages, transmitters and switches. The Series MAFS uses evenly distributed total and static pressure measuring points to deliver an accurate measurement of velocity pressure in a duct.

FEATURES/BENEFITS

- Blade design limits disruption of air stream
- Lightweight aluminum construction
- Flange mount for rectangular or square ducts

APPLICATIONS

- · VAV air flow measurement
- · Fume hood exhaust flow verification
- · HVAC retrofit air flow measurement

SPECIFICATIONS

Service: Clean air.

Wetted Materials: Aluminum AA6063.

Accuracy: 400 to 9000 FPM (45.7 m/s); ±2% FS, ±3% FS for 6" (160 mm) and 48"

(1200 mm) length models.

K-Factor: 0.81, 0.80 for 6" (160 mm) and 48" (1200 mm) lengths, 4" (100 mm)

lenath=0.82.

Maximum Temperature: 400°F (204°C); Gasket: -31 to 230°F (-35 to 110°C).

Minimum Design Flow: 400 FPM (2 m/s). Maximum Design Flow: 12,000 FPM (60.91 m/s).

Process Connections: Dual barb for 3/16" or 1/4" ID tubing.

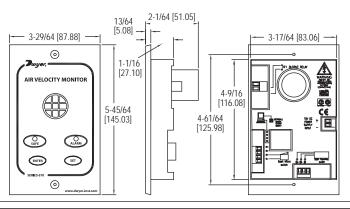
Straight Run Requirements: 5 diameters or longest side dimensions. Agency Approvals: Meets the technical requirements of EU Directive 2011/65/EU

(RoHS II).

MODEL C	HART						
	Probe		Probe		Probe		Probe
Model	Length (in)	Model	Length (in)	Model	Length (mm)	Model	Length (mm)
MAFS-4	4	MAFS-24	24	MAFS-100MM	100	MAFS-550MM	550
MAFS-6	6	MAFS-26	26	MAFS-125MM	125	MAFS-600MM	600
MAFS-8	8	MAFS-28	28	MAFS-160MM	160	MAFS-630MM	630
MAFS-10	10	MAFS-30	30	MAFS-200MM	200	MAFS-650MM	650
MAFS-12	12	MAFS-32	32	MAFS-250MM	250	MAFS-750MM	750
MAFS-14	14	MAFS-34	34	MAFS-300MM	300	MAFS-800MM	800
MAFS-16	16	MAFS-36	36	MAFS-315MM	315	MAFS-1000MM	1000
MAFS-18	18	MAFS-40	40	MAFS-400MM	400	MAFS-1500MM	1500
MAFS-20	20	MAFS-48	48	MAFS-450MM	450	MAFS-2000MM	2000
MAFS-22	22			MAFS-500MM	500		

FUME HOOD MONITOR Ensures Proper Fume Hood Performance

The Model 670 Fume Hood Monitor continuously senses air flow through the face of the fume hood, ensuring safe levels of fresh air are exhausting. The 670 provides a highly accurate hot wire sensor to detect very low flows common on fume hoods. The Model 670 comes with everything required to quickly install the unit including a mounting bracket, 24" of tubing for connecting to the inside of the hood wall and a 120 Volt AC power adapter.


FEATURES/BENEFITS

- · Flexible surface or flush mounting
- · LED safe and alarm status indicators
- Audible alarm
- · Sash alarm input
- Night time set-back

APPLICATIONS

· Fume hood ventilation monitoring

MODEL CHART						
Model	Model Description					
670	Fume hood monitor					

SPECIFICATIONS

Service: Fume hood face velocity air flow. Alarm Range: 30-400 FPM (0.15-2.0 m/s) Alarm Indication: Red LED and audible alarm. Low Air Velocity Alarm Delay: Fixed 5 s. Visual LED Display: Red: Alarm; Green: Normal.

Horn Silence: Yes-temporary and permanent.

Accuracy: Face velocity ±10%.

Temperature Limits: Operating temperature: 55 to 86°F (13 to 30°C); Storage

temperature: -40 to 150°F (-40 to 65°C).

Power Requirement: 15 VDC 500 mA; 120 VAC, 60 Hz power transformer

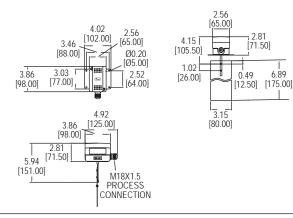
Relay Output Low Air Flow Alarm: 5 A @ 250 VAC.

Relay Input For Night Setback: 2 wire rated for 24 VDC usage.

Sash High Indication: Using a two wire micro switch or 3 wire proximity switch

input, rated for 24 VDC usage.

Mounting: Semi flush, flush or surface mounted when using included bracket.


CE

Weight: 5.0 oz (141 g).

MODEL AAFS

ADJUSTABLE AIR FLOW PADDLE SWITCH Ranges from 200 to 1800 FPM, Stainless Steel Vane, ABS Housing

The Model AAFS Adjustable Air Flow Paddle Switch is capable of detecting a wide range of air velocities with minimal user calibration. Quality features include a stainless steel vane, galvanized steel base, and ABS enclosure.

FEATURES/BENEFITS

- Adjustable air flow sensitivity from 200 to 1800 FPM
- · High current (15 A) rated SPDT contact
- · IP65 enclosure rating

APPLICATIONS

· Air flow proving in HVAC systems

MODE	MODEL CHART					
Model	Description					
AAFS	Adjustable air flow paddle switch					

SPECIFICATIONS

Service: Air and compatible gas.

Wetted Materials: Vane: SS; Lever: Brass; Base: Galvanized steel.

Housing: ABS

Temperature Limits: Ambient: -40 to 180°F (-40 to 85°C): Process: -14 to 185°F

(-10 to 85°C).

Humidity Limits: 10 to 90%, non-condensing

Switch Type: SPDT.

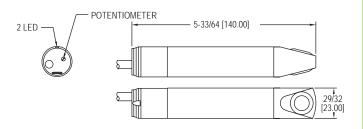
Electrical Rating: 15 (8) A @ 250 VAC.

Electrical Connection: Screw terminal with M18 x 1.5 cable gland.

Process Connection: Flange.

Mounting Orientation: Horizontal duct flow.

Set Point: Internal screw. Enclosure Rating: IP65. Weight: 13.6 oz (380 g). Agency Approvals: CE


USA: California Proposition 65

△WARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov

AIR FLOW SWITCH Monitors Flow in Ducts with Contact Output and Local LED Indication

The Series AVFS Air Flow Switch is specifically designed to monitor air flow in ducts and provides a 3 A contact output to indicate a change or loss of flow. The AVFS provides a ±5% set point repeatability across a full-scale range of 1-10 m/s (197-1969 fpm) and includes a mounting bracket for quick duct mounting.

FEATURES/BENEFITS

- Integral red/green air flow status LED's
- Flush sensor design limits issues due to dust or particulate in the air flow
- · IP65 construction

APPLICATIONS

- Fan monitoring
- · Filter monitoring
- · Damper feedback
- · Air handlers

MODEL CHART						
Model	Description					
AVFS-1	80-250 AC/DC power thermo air flow switch					
AVFS-2	24 VDC power thermo air flow switch					

SPECIFICATIONS

Air Velocity Range: 197-1969 FPM (1-10 m/s). Temperature Limits: 5 to 122°F (-10 to 50°C). Humidity Limits: 0-90% RH. Wetted Materials: PBT body, titanium sensor.

Pressure Limit: 14.7 psig (1 bar).

Housing: PBT. Repeatability: ±5% FS. Switch Type: N.O. SPST.

Electrical Rating: 3 A @ 30 VDC/250 VAC.

Response Time: 3-60 seconds. Varies with flow and set point.

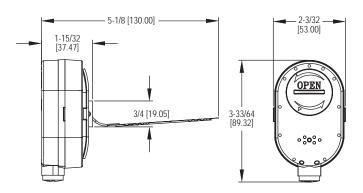
Power Requirement: AVFS-1: 80 to 250 AC/DC (47 to 63 Hz AC); AVFS-2: 24

VDC ±25%.

Power Consumption: 3 VA.

Electrical Connection: 6.5' (2 m) cable.

Enclosure Rating: IP65.


Display: 1 Red LED/1 Green LED.

Weight: 7.2 oz (203 g). Agency Approvals: CE

AIR FLOW INDICATOR AND ALARM For Air Flow Monitoring in 3" and 4" pipes

The Series DAFA Air Flow Indicator and Alarm alerts users of low or no air flow conditions in pipes utilizing a thin, field trimmable vane to sense the air flow rate. An 85 dB audible buzzer alternates with a bright red LED to alert users when the air flow rate drops, indicating low or no flow in the pipe. The DAFA is battery powered to provide versatility for where it can be installed, and offers a yellow LED to indicate a low battery. This device is ideal for monitoring radon mitigation systems by detecting a loss of air flow in the pipe and providing a signal to homeowners if the fan has stopped operating.

FEATURES/BENEFITS

- Simple and quick installation
- Field trimmable vane included to allow unit to be used in 3" and 4" pipes
- · Audible and visual alarms
- Battery-operated with up to 5 year battery life and low battery warning

APPLICATIONS

- · Radon mitigation systems
- Air flow monitoring in 3" and 4" pipes

MODEL (ODEL CHART				
Model	Description				
DAFA-1	Air flow indicator and alarm				

ACCESSORIES					
Model	Description				
A-DAFA-VANE	Replacement trimmable vane				
A-DAFA-BCOV	Replacement battery cover				

SPECIFICATIONS

Service: Clean air.

Actuation Point: 15 CFM (4" pipe); 10 CFM (3" pipe) on decrease in flow.

Audible Alarm: At least 85 dB @ 1 foot distance.

Visual Alarm: Red LED for no flow alarm; Yellow LED for low battery.

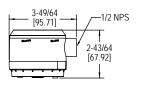
Wetted Materials: ABS, polycarbonate, rare earth magnet.

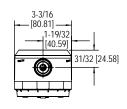
Power Requirements: 3 V CR2450 lithium battery, included, user replaceable.

Battery Life: 5 years steady state; 48 hours during alarm state.

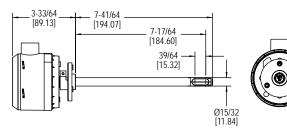
Temperature Limits: 32 to 122°F (0 to 50°C).

Mounting Orientation: Vertical. Weight: 4 oz (113.4 g). Agency Approvals: CE





3% and 5% Models, Optional BACnet or Modbus® Communication Protocols



2-5/32

[54.82]

The Series AVUL Air Velocity Transmitters quickly and accurately measures air velocity or volumetric flow in imperial or metric units. Simultaneous current and voltage outputs on all models provide universal inputs to monitoring equipment while the output range, units, and 0 to 5/10 VDC output can be configured via local DIP switches. The optional integral display, or the portable remote display tool, provide a convenient way to locally monitor process values and configure the unit.

Models are available in 3% and 5% accuracy models to suit a variety of needs, and the optional BACnet MS/TP or Modbus® RTU/ASCII communication protocol allows units to be daisy-chained while providing access to all of the velocity and flow data, as well as additional information such as air temperature.

FEATURES/BENEFITS

- Sensing elements have been coated with an engineered conformal coating to ensure durability and longevity
- · Field selectable ranges can be quickly configured without power to the unit

APPLICATIONS

- VAV systems
- · Building ducts

MODEL CH	HART					
Example	AVUL	-3	D	A1	-LCD	AVUL-3DA1-LCD
Model	AVUL					Air velocity transmitter
Accuracy		5				±(0.2 m/s + 5% of reading)
						@ standard conditions
		3				±(0.2 m/s + 3% of reading)
						@ standard conditions
Mounting			D			Duct mount
Output				A1		Analog universal (0-5 VDC, 0-10 VDC,
						4-20 mA)
				B1		Analog + BACnet MS/TP
				M1		Analog + Modbus® RTU/ASCII
Options					LCD	LCD display
					FC	Factory calibration certificate
					NIST	NIST certificate
					GLD	Electrical cable gland
					SF	Silicone Free
						<u> </u>

ACCESSORIES						
Model	Des	scripti	on			
A-151	Cat	ole gla	nd for	5 to 10	mm diameter cable	
A-435-A	Rer	Remote display tool				
A-AVUL-LO	D Fiel	Field upgradeable display				
A-AVUL-M	ΓG Reβ	olacem	ent m	nountin	g flange	
SCD-PS	100	-240 \	AC/V	DC to	24 VDC power supply	

SPECIFICATIONS

Service: Clean air and non-combustible, compatible gases.

Wetted Materials: Consult factory.

Range: 1000, 2000, 3000, 4000 FPM (5, 10, 15, 20 m/s); Field selectable. Accuracy: ±(5% of reading + 0.2 m/s) or ±(3% of reading + 0.2 m/s) @ standard

conditions, depending on model.

Temperature Limits: 32 to 122°F (0 to 50°C). Power Requirements: 24 VDC ±20% or 24 VAC ±20%. Humidity Limits: 5 to 95% RH, non-condensing. Output Signals: 4-20 mA, 0-5 VDC, 0-10 VDC.

Response Time (90%): 10 s, typical.

Zero and Span Adjustments: Digital push-buttons.

Output Load Resistance: Current output: 0 to 1100 Ω max.; Voltage output:

Minimum load resistance 1 k Ω . Current Consumption: 60 mA max. Display (optional): 5 digit LCD.

Electrical Connections (Analog): Power and output: four wire removable

European style terminal block for 16 to 26 AWG.

Communication (optional): Connections: BACnet MS/TP or Modbus® RTU/ASCII: three wire removable European style terminal block for 16 to 26 AWG; Supported

baud rates: 9600, 19200, 38400, 57600, 76800, 115200.

Device Load: 1/8th unit load.

Electrical Entry: 1/2" NPS thread. Accessory (A-151): Cable gland for 5 to 10 mm

diameter cable.

Enclosure Rating: NEMA 4X (IP66).

Mounting Orientation: Flow direction must be parallel to the sensor tip.


Weight: 6.0 oz (160 g). Agency Approval: BTL, CE.

PENCIL STYLE AIR VELOCITY TRANSMITTER 3% and 5% Models, Optional BACnet Communication Protocols

The Series AVPT Pencil Style Air Velocity Transmitter uses thermal anemometer technology to provide high accuracy and stable air velocity measurements in imperial and metric units. The Series AVPT can be configured with either a voltage output or BACnet MS/TP communication to provide universal inputs to a variety of monitoring equipment. Models are available with fixed cable lengths of 20 or 78 inches with flying leads or a 5-pin M12 connector on a 24 inch cable. Probes are available in lengths of 6 or 12 inches. A mounting flange included with the product provides the ability to vary insertion depth.

Models are available in 3% or 5% accuracy to suit a variety of applications, while the optional BACnet MS/TP communication protocol allows units to be daisy-chained to provide access to all of the velocity and temperature measurements.

FEATURES/BENEFITS

- · Sensing elements have been coated with an engineered conformal coating to ensure durability and longevity
- · Varying lengths for easy installation
- · Functionality at temperatures below freezing

APPLICATIONS

- VAV systems
- · Building ducts

MODEL CHART

SPECIFICATIONS

Service: Clean air.

Ranges: 1000, 2000, 3000, or 4000 FPM (5, 10, 15, or 20 m/s); Model specific. Accuracy: Standard: ±(5% reading +40 FPM); High accuracy: ±(3% reading +40

FPM); Model specific.

Power Requirements: 24 VAC/VDC ±20%

Current Consumption: < 50 mA.

Outputs: Analog: 0-10 V (0-5 V configurable). BACnet MS/TP: Selectable at time of order.

Supported Baud Rate: 9600, 19200, 38400, 57600, 76800, and 115200. Voltage Output Load Resistance: 10k Ω minimum (10 V output with AC supply);

1k Ω minimum all other conditions.

Electrical Connection: Cable: Plenum rated cable with 22 AWG conductors.

5-Conductor Cable whip: 20" (0.5 m) or 78" (2 m).

5-pin M-12: 24" (0.6 m); model specific. Response Time (90%): 4 s, typical.

Operational Temperature Limits: -4 to 140 °F (-20 to 60 °C). Storage Temperature Limits: -40 to 140°F (-40 to 60°C).

Probe Length: 6" or 12"; model specific.

Enclosure Rating: NEMA 3.

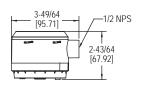
Mounting Orientation: Flow direction must be parallel to the sensor tip; See

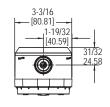
Installation section for details.

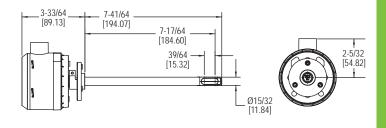
Weight: 1.4 oz (40 g); based on M12 connection with 12" probe length. Agency Approvals: CE, RCM, BTL, UL plenum rated (UL tested).

Example	MODEL CHAR	1							
Accuracy S H Standard ±5% of reading +40 FPM High accuracy ±3% of reading +40 FPM Velocity Range 01 02 03 04 04 05 10 1000 FPM 2000 FPM 3000 FPM 4000 FPM 5 m/s 10 m/s	Example	AVPT -S	03	C1	Α	06	-127	-FC	AVPT-S03C1A06-127-FC
H High accuracy ±3% of reading +40 FPM	Series	AVPT							Pencil style air velocity transmitter
Velocity Range 01 02 03 04 04 05 10 1000 FPM 2000 FPM 3000 FPM 4000 FPM 5 m/s 10 m/s	Accuracy	S							Standard ±5% of reading +40 FPM
Range 02 03 04 3000 FPM 3000 FPM 4000 FPM 5 m/s 10 m/s		H							High accuracy ±3% of reading +40 FPM
03	Velocity		01						1000 FPM
04 4000 FPM 5 m/s 10 m/s	Range		1 -						2000 FPM
05 5 m/s 10 m/s			03						3000 FPM
10 10 m/s			04						4000 FPM
									5 m/s
			10						10 m/s
									1.5
20 20 m/s			20						
Electrical C1 Cable whip 20" (0.5 m)									' ' /
Connection C2 Cable whip 78" (2 m)	Connection			-					' ' '
M1 M12 24" (0.6 m)				M1					,
Output Type Analog 0-5 V and 0-10 V	Output Type								0
B BACnet MS/TP					В				
Probe	Probe								1 -
Length 12 12"						12			·-
BACnet 127 000-127 whole integer with BACnet out	BACnet						127		000-127 whole integer with BACnet output
Address	Address								
Options FC Factory calibration certificate	Options								
NIST NIST traceable certificate								NIST	NIST traceable certificate

MODEL CHART					
Example	AVPT				
SCD-PS	100-240 VAC/VDC to 24 VDC power supply				
A-AVUL-MTG	Replacement mounting flange				
A-AVUL-QFG	Quick fix cable gland for outside the duct				
	installation				


AIR VELOCITY TRANSMITTER


1% and 2% Models, Optional BACnet MS/TP or Modbus®



The Series AVLV Air Velocity Transmitter quickly and accurately measures air velocity or volumetric flow in imperial or metric units. Simultaneous current and voltage outputs on all models provide universal inputs to monitoring equipment while the output range, units, and 0-5/10 VDC output can be configured via local DIP switches. The optional integral display, or the portable remote tool, provide a convenient way to local monitor process values and configure the unit.

Models are available in 1% and 2% accuracy models and low velocity ranges to suit a variety of needs, and the optional BACnet MS/TP or Modbus® RTU/ASCII communication protocol allows units to be daisy-chained while providing access to all of the velocity and flow data, as well as additional information such as air temperature. The lower ranges in these high accuracy units allow for applications in quality intensive environments, such as the pharmaceutical industry.

FEATURES/BENEFITS

- · Sensing elements have been coated with an engineered conformal coating to ensure durability and longevity
- · Field selectable ranges can be quickly configured without power to the unit

APPLICATIONS

- · VAV systems
- · Building ducts
- · Clean room systems

SPEC	IFICAT	TIONS
------	---------------	-------

Service: Clean air and non-combustible, compatible gases.

Wetted Materials: Consult factory.

Range: 100, 200, 300, 400 FPM (0.5, 1, 1.5, 2 m/s); field selectable.

Accuracy: See chart.

Temperature Limits: 32 to 122°F (0 to 50°C).

Power Requirements: 24 VDC ±20% or 24 VAC ±20%. Humidity Limits: 5 to 95% RH, non-condensing. Output Signals: 4-20 mA, 0-5 VDC, 0-10 VDC.

Response Time (90%): 4 s, typical; 1 s at constant temperature.

Zero and Span Adjustments: Digital push buttons.

Output Load Resistance: Current output: 0 to 1100 Ω max.; Voltage output:

Minimum load resistance 1 k Ω . Current Consumption: 60 mA max. Display: 5 digit LCD (optional).

Electrical Connections: Analog: Power and output: four wire removable European style terminal block for 16 to 26 AWG; Communication: Connections: BACnet MS/ TP or Modbus® RTU/ASCII: three wire removable European style terminal block for 16 to 26 AWG.

Supported Communication Baud Rates: 9600, 19200, 38400, 57600, 76800, 115200 (optional).

Device Load: 1/8 unit load.

Electrical Entry: 1/2" NPS thread; Accessory: Cable gland for 5 to 10 mm diameter

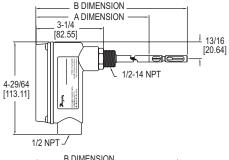
cable, A-151.

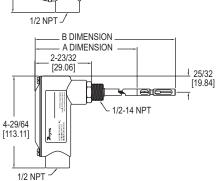
Enclosure Rating: NEMA 4X (IP66).

Mounting Orientation: Flow direction must be parallel to the sensor tip.

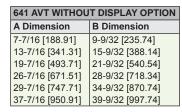
Weight: 6.0 oz (160 g). Agency Approval: BTL, CE

MODEL CI	HART					
Example	AVLV	-2	D	A1	-LCD	AVLV-2DA1-LCD
Model	AVLV					Air velocity transmitter
Accuracy		2				± (2% of reading + 0.06 m/s)
		1				± (1% of reading + 0.06 m/s)
Mounting			D			Duct mount
Output				A1		Analog universal (0-5 VDC, 0-10 VDC, 4-20
						mA)
				В1		Analog + BACnet MS/TP
				M1		Analog + Modbus® RTU/ASCII
Options					LCD	LCD display
					FC	Factory calibration certificate
					NIST	NIST certificate
					GLD	Electrical cable gland


ACCURACY CHART				
Velocity Range	Accuracy Rating*			
20 to 100 FPM (0.15 to 0.5 m/s)	± (2% of reading + 0.04 m/s [7.9 FPM])			
	± (1% of reading + 0.04 m/s [7.9 FPM])			
20 to 200 FPM (0.15 to 1.0 m/s)	± (2% of reading + 0.04 m/s [7.9 FPM])			
	± (1% of reading + 0.04 m/s [7.9 FPM])			
20 to 300 FPM (0.15 to 1.5 m/s)	± (2% of reading + 0.05 m/s [9.8 FPM])			
	± (1% of reading + 0.05 m/s [9.8 FPM])			
20 to 400 FPM (0.15 to 2.0 m/s)	± (2% of reading + 0.06 m/s [11.8 FPM])			
	± (1% of reading + 0.06 m/s [11.8 FPM])			
*Accuracy dependent on model selected when ordering.				



AIR VELOCITY TRANSMITTERS


High Accuracy, Field Selectable Ranges

641 AVT WITH DISPLAY OPTION					
A Dimension	B Dimension				
	9-13/16 [249.24]				
13-63/64 [355.20]	15-13/16 [401.64]				
19-63/64 [507.60]					
26-63/64 [685.40]	28-13/16 [731.84]				
32-63/64 [837.80]	34-13/16 [884.24]				
37-63/64 [964.80]	39-13/16 [1011.24]				

The Series 641 Air Velocity Transmitters are the ideal instrument for monitoring air flow. This transmitter uses a heated mass flow sensor which allows for precise velocity measurements at various flow rates and temperatures. The 641's 16 field-selectable ranges provides it the versatility to be selected for several air flow applications. The optional LED produces a complete, low-cost solution for local indication of air flow.

FEATURES/BENEFITS

- Ranges from 250 FPM (1.25 MPS) to 15,000 FPM (75 MPS)
- · Optional bright LED display
- · Easy push-button set-up
- · Compact housing
- 4-20 mA output
- · Digital filter for signal damping

APPLICATIONS

- · Exhaust stack flow monitoring
- · Air control in drying processes
- · HVAC air velocity measurements
- · Fan supply and exhaust tracking
- · Clean room ventilation monitoring

MODEL CHART			
Model	Probe Length*		
641-6	6" (152.4 mm)		
641-6-LED	6" (152.4 mm)		
641-12	12" (304.8 mm)		
641-12-LED	12" (304.8 mm)		
641-18	18" (457.2 mm)		
641-18-LED	18" (457.2 mm)		
641-24	24" (609.6 mm)		
641-24-LED	24" (609.6 mm)		
*Other probe lengths available			
contact factory.			

OPTIONS				
To order add suffix:	Description			
-NIST	NIST traceable calibration certificate			
Example: 641-6-NIST				

ACCESSORIES						
Model	Description					
A-156	Universal mounting plate, 1/2" female NPT					
A-158	Split flange mounting kit					
A-159	Duct mounting gland					
641-LED	Field-upgradeable LED					

SPECIFICATIONS

Service: Clean air and compatible, non-combustible gases.

Accuracy: 3% FS process gas: 32 to 122°F (0 to 50°C); 4% FS process gas: -40 to

32°F & 122 to 212°F (-40 to 0°C & 50 to 100°C).

Response Time: Flow: 1.5 s to 95% of final value (output filter set to minimum). Temperature Limits: Process: -40 to 212°F (-40 to 100°C); Ambient: 32 to 140°F

(0 to 60°C).

Pressure Limit: 100 psi (6.89 bar) maximum.

Humidity Limit: Non-condensing.

Power Requirements: 12-35 VDC, 10-16 VAC. 1.5 A rating required on supply due

to initial power surge drawn by transmitter.

Output Signal: 4-20 mA, isolated 24 V source, 3 or 4-wire connection.

Output Filter: Selectable 0.5-15 (s). Loop Resistance: 600Ω max. Current Consumption: 300 mA max. Electrical Connections: Screw terminal. Process Connections: 1/2" male NPT.

Enclosure Rating: Designed to meet NEMA 4X (IP66) for non LED models only.

Mounting Orientation: Unit not position sensitive. Probe must be aligned with

airflow.

Weight: 12.6 oz (357.2 g). Agency Approval: CE.

OPTIONAL DISPLAY VERSION:

Display: 4-1/2 digit 1/2" red LED.

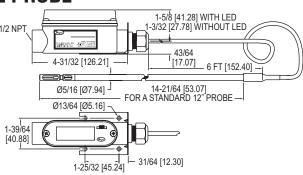
Resolution: 1 FPM, 0.01 MPS (10 FPM @ 10,000 and 15,000 FPM ranges).

Weight: 13.3 oz (377 g).

AIR VELOCITY TRANSMITTER WITH REMOTE PROBE

For Remotely Mounting Electronic Enclosure

The Series 641RM Air Velocity Transmitter with Remote Probe features the same highly accurate heated mass flow sensor as the Series 641, with a remote probe construction. The units 6′ cable which connects the sensing probe with the electronic enclosure allows the enclosure to be mounted where it can be more easily accessed.


- FEATURES/BENEFITS
 Ranges from 250 FPM (1.25 MPS) to 15,000 FPM (75 MPS)
- Optional bright LED display
 Easy push-button set-up
- Compact housing
- 4-20 mA outputDigital filter for signal damping

APPLICATIONS

- Exhaust stack flow monitoring
- · Air control in drying processes
- HVAC air velocity measurements
 Fan supply and exhaust tracking
- · Clean room ventilation monitoring

MODEL CHART					
Model	Description				
	Air velocity transmitter with 6´ cable Air velocity transmitter with 6´ cable with LED display				

OPTIONS				
To order add suffix:	Description			
-NIST	NIST traceable calibration certificate			
Example: 641RM-12-NIST				

SPECIFICATIONS

Service: Clean air and compatible, non-

Combustible gases.

Accuracy: 3% FS process gas: 32 to 122°F (0 to 50°C); 4% FS process gas: -40 to 32°F and 122 to 212°F (-40 to 0°C)

40 to 32 F and 122 to 212 F (-40 to 0°C). **Response Time:** Flow: 1.5 s to 95% of final value (output filter set to minimum). **Temperature Limits:** Process: 40 to 130°C (40 to 100°C). Applies: 40 to 130°C (40 to 100°C). 212°F (-40 to 100°C); Ambient: 32 to 140°F (0 to 60°C). **Pressure Limit:** 100 psi (6.89 bar)

maximum.

maximum.

Humidity Limit: Non-condensing.

Power Requirements: 12-35 VDC,
10-16 VAC. 1.5 A rating required on supply due to initial power surge drawn by transmitter.

Output Signal: 4-20 mA, isolated 24 V source 3 or 4 wire connection.

source, 3 or 4-wire connection.

Output Filter: Selectable 0.5-15 (seconds).

Loop Resistance: 600 Ω max. Current Consumption: 300 mA max. Electrical Connections: Screw terminal Mounting Orientation: Unit not position sensitive. Probe must be aligned with airflow.

Weight: 13.2 oz (374.26 g).
Cable Length: 6' (1.82 m).
Probe Length: 12" (30.48 cm) standard.
Probe Diameter: 5/16" (0.79 cm).

OPTIONAL DISPLAY VERSION:

Display: 4-1/2 digit 1/2" red LED. **Resolution:** 1 FPM, 0.01 MPS (10 FPM)

② 10,000 and 15,000 FPM ranges). **Weight:** 13.9 oz (394.16 g).

ACCESS	ACCESSORIES							
Model Description								
A-158 A-159	Universal mounting plate, 1/2" female NPT Split flange mounting kit Duct mounting gland Field-upgradeable LED							

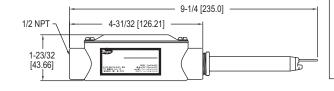
SERIES 641B

AIR VELOCITY TRANSMITTER

Dirty Air Flow Applications

The **Series 641B Air Velocity Transmitter** uses a heated mass flow sensor suitable for dirty air flow applications. It has user-selectable ranges from 250 FPM (1.25 MPS) to 2000 FPM (10 MPS).

FEATURES/BENEFITS


- SS sensor suitable for dirty air flow measurement
 Ranges from 250 FPM (1.25 MPS) to 2000 FPM (10 MPS)
- 4-20 mA outputDigital filter for signal damping

APPLICATIONS

- · Exhaust stack flow monitoring

- Air control in drying processes
 HVAC air velocity measurements
 Fan supply and exhaust tracking
- · Clean room ventilation monitoring

MODEL CHART						
Model	Description					
	Air velocity transmitter					
641B-4-LED	Air velocity transmitter with LED display					

SPECIFICATIONS

Service: Air and compatible, non-

combustible gases.

Accuracy: 5% FS process gas: 32 to 122°F (0 to 50°C). 6% FS process gas: -40 to 32°F & 122 to 176°F (-40 to 0°C) and 50 to 80°C).

Response Time: Flow: 1.5 s to 95% of final value (output filter set to minimum). Temperature Limits: Process: -40 to 176°F (-40 to 80°C). Ambient: 32 to 140°F (0 to 60°C). **Humidity Limit:** Non-condensing.

Power Requirements: 12-35 VDC, 10-16 VAC. 1.5 A rating required on supply due to initial power surge drawn by transmitter.

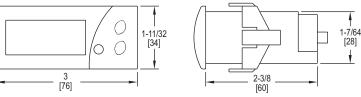
Output Signal: 4-20 mA, isolated 24 V source, 3- or 4-wire connection. Output Filter: Selectable 0.5 -15

(seconds). **Loop Resistance:** 600 Ω max.

Current Consumption: 300 mA max*. Electrical Connections: Screw terminal. Enclosure Rating: Designed to meet NEMA 4X (IP66) for non LED models

Mounting Orientation: Unit not position

Weight: 12.6 oz (357.2 g).


*A brief current transient exceeding 300 mA may be seen on startup

ACCESSORIES				
Model	Description			
	Mounting gland with 1/2" male NPT fitting Flange mounting plate with 1/2" female NPT			

MIDITY SWITCH

Programmable, 8 A Relay, 3-Digit Display

Panel cutout 2-51/64" x 1-9/64" (71 x 29 mm)

The Series HS Humidity Switch provides control for humidifying or dehumidifying systems. Relative humidity, output status, and error messaging can be viewed on the bright green LED. Access to programming parameters can be locked for security purposes using the password protection feature.

FEATURES/BENEFITS

- · Relative humidity display and control
- · Parameter protection
- 0-1 V, 4-20 mA or 3 V (THC-P) input selection

APPLICATIONS

- · Environmental chambers
- · Beer and wine chillers
- · Greenhouses

MODEL CHART				
Model	Supply Power			
	115 VAC			
HS-312	230 VAC			

SPECIFICATIONS

Relative Humidity Range: 10 to 100%

Input: 0-1 V, 3 V or 4-20 mA. Accuracy: THC-P: ±5% @ 20 to 90%;

HS: ±1% RH.

Display: 3-digit, green, 1/2" (12.7 mm)

digits.

Resolution: 1 digit.

Temperature Limits: 32 to 158°F (0 to

70°C).

Storage Temperature: -4 to 176°F (-20

to 80°C)

Output: 16 A SPDT relay @ 250 VAC

resistive.

Horsepower Rating (HP): 1 HP.

Control Type: ON/OFF.

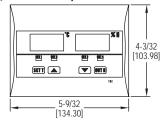
Power Requirements: 115 VAC or 230

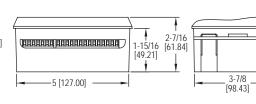
VAC (depending on model).

Memory Backup: Nonvolatile memory.

Weight: 2.3 oz (65 g). Front Panel Rating: IP64. Agency Approvals: CE, cURus.

ACCESSORIES							
Model	Description						
THC-P	Humidity probe, 3 V output, 4' (1.2 m) cable						


SERIES THC


Humidity Switches

TEMPERATURE/HUMIDITY SWITCH

Independent Displays, 61 Programmable Parameters, 4 SPST Relays

The Series THC Temperature/Humidity Switch simultaneously measures and controls temperature and humidity. The unit offers a 3-digit red display for temperature indication and a 3-digit green display indicating humidity. The Series THC is equipped with four independent relays, two for temperature control and two relays for humidity

The THC Temperature/Humidity Switch accepts up to two temperature probe inputs (sold separately) and a humidity sensor. A humidity sensor with 0-1 V, 3 V (THC-P sold separately), or 4-20 mA output can be used with the Series THC.

FEATURES/BENEFITS

- Temperature and humidity control in one device
- · Password protected parameter settings
- · Selectable fail safe status of relay outputs

APPLICATIONS

- · Isolation chambers
- · Environmental chambers
- Greenhouses
- · Beer and wine chillers

MODEL CHART							
Model	el Supply Power Unit						
THC-10	115 VAC	°F					
THC-11	115 VAC	°C					
THC-20	230 VAC	°F					
THC-21	230 VAC	°C					

SPECIFICATIONS

Measurement Range: Temperature: -58 to 302°F (-50 to 150°C); Humidity: 0 to 100% RH.

Input: Up to 2 thermistors and 1

humidity sensor.

Output: 4 SPST, 8 A relays @ 250 VAC. Horsepower Rating (HP): 1/3 HP. Control Type: ON/OFF direction,

direct or reverse acting, neutral. Power Requirements: 110 or 230 VAC

(depending on model).

Accuracy: Temperature ±0.5% of probe range; Humidity: 20 to 90%.

Display: Two 3-digit displays. 1/2° diaits.

Resolution: 0.1°.

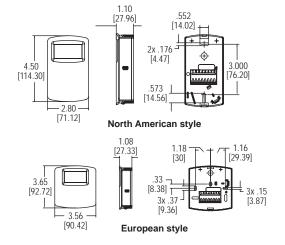
Memory Backup: Nonvolatile memory. Ambient Operating Temperature: 32 to 158°F (0 to 70°C).

Storage Temperature: -4 to 176°F

(-20 to 80°C). Weight: 1.17 lb (530 g).

Panel Cutout: 5.15" x 3.97" (131 x 101

Front Panel Protection: IP64. Agency Approvals: CE.


ACCESSORIES					
Model	Description				
THC-P	Humidity probe, 3 V output, 4 ft (1.2 m) cable				
TS-5	Temperature probe, PVC with 5 ft (1.5 m) cable				
TS-6	Temperature probe, metal with 5 ft (1.5 m) cable				
TS-51	Temperature probe, PVC with 10 ft (3 m) cable				
TS-61	Temperature probe, metal with 10 ft (3 m) cable				

WALL MOUNT HUMIDITY/TEMPERATURE/DEW POINT TRANSMITTERS Optional LCD Display

The Series RHP-E/N Wall Mount Humidity/Temperature/Dew Point Transmitters are the most versatile room transmitter on the market. The stylish housing is well vented to provide air flow across the sensor to improve measurement accuracy. The humidity and the dew point are measured using a capacitive polymer sensor. The humidity and dew point can have either a current or voltage output, while the optional temperature output can be a current, voltage, RTD or thermistor. For models with current or voltage for the temperature output, the temperature range is field selectable.

FEATURES/BENEFITS

- · Field selectable relative humidity or dew point output
- · Universal analog outputs
- Integral or service tool LCD display options
- Two housing designs to match North American and European aesthetics

APPLICATIONS

- · Air economizers
- · Room comfort monitoring
- · Greenhouse monitoring

SPECIFICATIONS

Relative Humidity Range: 0 to 100%

Temperature Range: -40 to 140°F (-40 to 60°C) for thermistor and RTD sensors. -20 to 140°F (-28.9 to 60°C) for solid state band gap temperature sensors.

Dew Point Temperature Range: -20 to 140°F (-28.9 to 60°C); 0 to 100°F (-17.8 to 37.8°C); 40 to 90°F (4.4 to 32.3°C); -4 to 140°F (-20 to 60°C) field-selectable

Accuracy: RH: Model RHP-2XXX ±2% 10 to 90% RH @ 25°C; Model RHP-3XXX ±3% 20 to 80% RH @ 25°C; Model RHP-5XXX ±5% 20 to 80% RH @ 25°C; Thermistor temperature sensor: ±0.36°F @ 77°F (±0.2°C @ 25°C); RTD temperature sensor: DIN Class B; ±0.54°F @ 32°F (±0.3°C @ 0°C); Solid state band gap temperature sensor: ±0.9°F @ 77°F (±0.3°C @ 25°C).

Hysteresis: ±0.8%. Repeatability: ±0.1% typical Temperature Limits: Operating: -40 to 140°F (-40 to 60°C); Storage: -40 to 176°F (-40 to 80°C).

Compensated Temperature Range:

-4 to 140°F (-20 to 60°C). 4-20 mA Loop Powered Outputs:

Power requirements: 10-35 VDC; Output

signal: 4-20 mA, 2 channels for humidity/ solid state temperature sensor models (loop powered on RH). Switch selectable RH/dew point. Switch selectable normal or reverse output.

0-5/10V Outputs: Power

requirements: 15-35 VDC or 15-29 VAC; Output load: 5 mA max., 2 channels for humidity/solid state temperature sensor models. Switch selectable 0-10 V/2-10 V or 0-5 V/1-5 V output. Switch selectable RH/dew point. Switch selectable normal or reverse output.

Solid State Band Gap Temperature Sensor Output Ranges: Switch selectable, -20 to 140°F (-28.9 to 60°C); 0 to 100°F (-17.8 to 37.8°C); 40 to 90°F (4.4 to 32.3°C); -4 to 140°F (-20 to 60°C).

Response Time: 8 s.

Electrical Connections: Screw terminal block.

Drift: <0.25% RH/year.

RH Sensor: Capacitance polymer. Enclosure Material: Polycarbonate. Enclosure Rating: IP20.

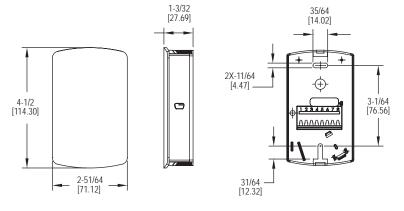
Display: Optional LCD; Switch selectable %RH or dew point, °F/°C. Display Resolution: RH: 1%;

Temperature: 0.1°F (0.1°C); Dew point: 1°F (1°C).

Weight: 4.4 oz (125 g) Agency Approvals: ČE.

MODEL CHART							
Example	RHP	-3	N	4	Α	-LCD	RHP-3N4A-LCD
Series	RHP						Humidity/temperaturedew point transmitter
Accuracy		2 3 5					2% accuracy 3% accuracy 5% accuracy
Housing			E N				European style wall mount North American style wall mount
Humidity/Dew Point Output				4			4-20 mA/0-5 VDC/0-10 VDC
Temperature Output					0 4 A B C D E F		None 4-20 mA/0-5 VDC/0-10 VDC 10K Ω @ 25°C thermistor type III 10K Ω @ 25°C thermistor type II 3K Ω @ 25°C thermistor 100 Ω RTD DIN 385 1K Ω RTD DIN 385 20K Ω @ 25°C thermistor
Options						LCD NIST	LCD display NIST traceable calibration certificate

ACCESSORIES								
Model	Description							
	Remote LCD display allows remote indication of select Dwyer wall mount transmitters for validation or certification purposes							
SCD-PS	100-240 VAC/VDC to 24 VDC power supply							



WALL MOUNT HUMIDITY/TEMPERATURE TRANSMITTER 2% or 3% Humidity Sensor, Passive Temperature Outputs

The Series RHPLC Wall Mount Humidity/Temperature Transmitter is a compact economical sensor for the building automation marketspace. The stylish housing is well vented to provide air flow across the sensor to improve measurement accuracy. Each unit utilizes a capacitive polymer sensing element to deliver a proportional analog output. A combination humidity and temperature model can be configured with current, voltage, RTD, or thermistor output. A wide selection of passive RTD or thermistor temperature sensors are available in this series.

FEATURES/BENEFITS

- 2% or 3% accuracy models
- · Humidity only or temperature and humidity combo
- Wide selection of passive thermistor or RTD temperature sensors

APPLICATIONS

· Air economizers

· Room comfort monitoring

SPECIFICATIONS

Sensor: Capacitive polymer.

Relative Humidity Range: 0-100% RH.

RH Accuracy: ±2% 10 to 90% RH @ 25°C for 2% accuracy units; ±3% 20 to 80%

RH @ 25°C for 3% accuracy units.

RH Hysteresis: ±0.8%.

RH Repeatability: ±0.1% typical.

Temperature Output Range: -40 to 140°F (-40 to 60°C).

Passive Thermistor Temperature Sensor Accuracy: ±0.36°F @ 77°F (±0.2°C @

25°C).

Accuracy RTD Temp Sensor: DIN Class B; ±0.3°C @ 0°C (±0.54°F @ 77°F). Accuracy Current/Voltage Temperature Output: ±0.9°F @ 72°F (±0.3°C @

Temperature Limits: Operating: -40 to 140°F (-40 to 60°C); Storage: -40 to 176°F

Power Requirements: 10-35 VDC for 4-20 mA or 0-5 VDC output; 15-35 VDC for 0-10 VDC output; 10-29 VAC for 0-5 VDC output; 15-29 VAC for 0-10 VDC output.

Response Time: 8 s (T63).

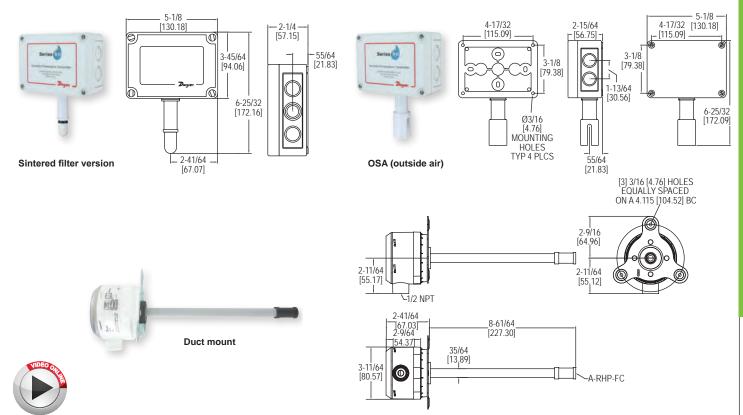
Electrical Connections: Screw terminal block.

Drift: <0.25% RH/year.

Enclosure Material: Polycarbonate.

Weight: 4.4 oz (125 g). Agency Approvals: CE

MODEL CHART							
Example	RHPLC	-3	N	2	Α	-FC	RHPLC-3N2A-FC
Series	RHPLC						Humidity/temperature transmitter
Accuracy		2					2% accuracy
		3					3% accuracy
Housing			N				North American style wall mount
Humidity				1			Current 4-20 mA
Output				2			Voltage 0-10 VDC
				3			Voltage 0-5 VDC
Temperature					0		None
Output					1		Current 4-20 mA
					2		Voltage 0-10 VDC
					3		Voltage 0-5 VDC
					Α		10K Ω @ 25°C thermistor type III
					В		10K Ω @ 25°C thermistor type II
					С		3K Ω @ 25°C thermistor
					D		100 Ω RTD DIN 385
					E		1K Ω RTD DIN 385
					F		20K Ω @ 25°C thermistor
Options						FC	Factory calibration certificate (3%
							accuracy units)


ACCESSORIES					
Model	Description				
SCD-PS	100-240 VAC/VDC to 24 VDC power supply				
APT-40-5DN	AC power transformer, 120/208/240/277/480 VAC input, 24 VAC isolated output, 40 VA, dual hub				

MIDITY/TEMPERATURE TRANSMITTERS

Passive Temperature Outputs, Sintered Filter Options

The Series RHP Humidity/Temperature Transmitters combine the voltage or current humidity transmitter output with a passive temperature thermistor or RTD output. Featuring polymer capacitance humidity sensors, models are available with 2%, 3% or 5% accuracies. Duct mounted transmitters are available with an optional two-line alpha numeric LCD display.

FEATURES/BENEFITS

- 2%, 3%, or 5% accuracy models Optional LCD display on duct mount models
- Radiation shield option for outdoor installation in direct sunlight

APPLICATIONS

- · Air economizers
- · Outdoor temperature and relative humidity reference
- · Pool room humidity monitoring

MODEL CHA	MODEL CHART							
Example	RHP	-2	D	1	Α	-LCD	RHP-2D1A-LCD	
Series	RHP						RH/passive temperature sensor transmitter	
Accuracy		2 3 5					2% accuracy 3% accuracy 5% accuracy	
Housing Type			D O S R				Duct mount with plastic hydrophobic filter OSA (outside air) OSA with sintered filter* Radiation shield	
RH Output				1 2 3			4-20 mA 0-10 V 0-5 VDC	
Temperature Sensor					0123ABCDEF		None 4-20 mA 0-10 VDC 0-5 VDC 10K @ 25° C thermistor type III 10K @ 25° C thermistor type II 3K @ 25° C thermistor 100 Ω RTD DIN 385 1K Ω RTD DIN 385 20K Ω @ 25° C thermistor	
Options						LCD NIST	LCD display NIST traceable calibration certificate	

*Use OSA with sintered filter models when purchasing Series RHRS radiation shield separately.

SPECIFICATIONS

Relative Humidity Range: 0 to 100% RH.

Temperature Range: -40 to 140°F (-40 to 60°C).

Accuracy, RH: RHP-2XXX ±2% 10-90% RH @ 25°C; RHP-3XXX ±3% 20-80% RH @ 25°C; RHP-5XXX ±5% 20-80% RH @ 25°C.

Accuracy, Thermistor Temp Sensor: ±0.2°C @ 25°C (±0.36°F @ 77°F).

Accuracy, RTD Temp Sensor: DIN Class B; ±0.3°C @ 0°C (±0.54°F @ 32°F).

Accuracy, Solid State Band Gap: ±0.9°F @ 77°F (±0.3°C @ 25°C).

Hysteresis: ±1%.
Repeatability: ±0.1% typical.
Temperature Limits: -40 to 140°F (-40 to 60°C).
Storage Temperature: -40 to 176°F (-40 to 80°C).
Compensated Temperature Range: -4 to 140°F (-20 to 60°C).
4-20 mA Loop Powered Models: Power requirements: 10-35 VDC; Output signal: 4-20 mA. **0-5/10 V Output Models:** Power requirements: 15-35 VDC or 15-29 VAC; Output

Solid State Band Gap Temperature Sensor Output Ranges: Switch selectable, -20 to 140°F (-28.9 to 60°C); 0 to 100°F (-17.8 to 37.8°C); 40 to 90°F (4.4 to 32.3°C); -4 to 140°F (-20 to 60°C).

Response Time: 15 s.
Electrical Connections: Removable screw terminal block

Conduit Connection: Duct mount: 1/2" NPS; OSA: 1/2" (22.3 mm).

Drift: < 1% RH/year.

RH Sensor: Capacitance polymer.

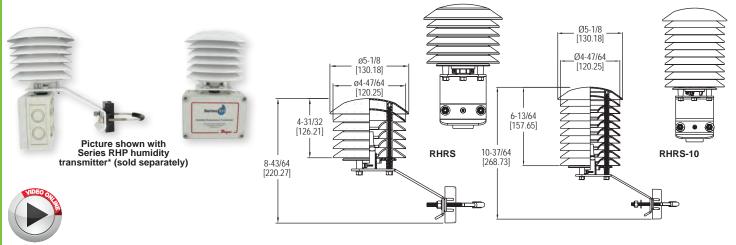
Temperature Sensor: Types 1, 2, 3: Solid state band gap; Curves A, B, C: Thermistor; Curves D, E: Platinum RTD DIN 385.

Enclosure: Duct mount: PBT; OSA: Polycarbonate.

Enclosure Rating: Duct mount: NEMA 4X (IP66) for housing only; OSA: NEMA 4X

Display: Duct mount only, optional 2-line alpha numeric, 8 characters/line. Display Resolution: RH: 0.1%; 0.1°F (0.1°C).

Weight: Duct mount: .616 lb (.3 kg); OSA: 1 lb (.45 kg).


Agency Approvals: CE.

ACCESSORIES				
Model	Description			
A-RHP-FC	Replacement plastic hydrophobic filter			
	Retrofit tool for fitting O-ring on RHP-D/M models for new filter			
	A-RHP-FC			

TSIDE AIR HUMIDITY RADIATION SHIELDS

6 or 10 Plate Design, Integral Pipe Mounting Kit

The Series RHRS Outside Air Humidity Radiation Shields protects outside air humidity transmitters from rain and radiated heat. With the curved shape and color of the plates, air flow is able to move across the sensor to keep radiated temperatures from rooftops and surrounding surfaces from affecting humidity readings.

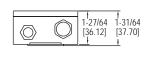
FEATURES/BENEFITS

- Adjustable sensor mounting collar works with Dwyer RHP sintered filter outdoor air humidity transmitters or other RH devices
 Universal mount fits 3/4" to 1-1/2" pipe or flat surfaces

APPLICATIONS

- Building outside air referenceWeather stations


MODEL CHART				
Model Description				
RHRS 6 plate radiation shield 10 plate radiation shield				
Note: Only sintered filter OSA models of Series RHP are compatible with the shield.				


SERIES WHT

WEATHER-RESISTANT HUMIDITY/TEMPERATURE TRANSMITTER

Compact Housing, Sintered Filter

The compact Series WHT Weather-Resistant Humidity/Temperature Transmitter is designed to withstand the elements. A removable sintered filter protects the polymer capacitance sensor from solid objects that may come in contact with the transmitter. The transmitter is available with 4-20 mA or 0-10 VDC output signals for both temperature and humidity. This transmitter is ideal for measuring outside air temperature and humidity levels for air handling economizer applications.

FEATURES/BENEFITS

- RH or RH and temperature outputs
 Compact NEMA 3S construction

APPLICATIONS

- · Air handling economizers
- · Air environment monitoring in agriculture or livestock cultivation houses

MODEL CHART						
Model	Accuracy	Accuracy RH Output Temperature				
WHT-310	3%	4-20 mA	None			
WHT-311	3%	4-20 mA	4-20 mA			
WHT-320	3%	0-10 VDC	None			
WHT-322	3%	0-10 VDC	0-10 VDC			
WHT-330	3%	0-5 VDC	None			
WHT-333		0- 5 VDC	0-5 VDC			
WHT-31A		4-20 mA	10K Ω Type III			
WHT-32A	3%	0-10 VDC	10K Ω Type III			
Note: For 2% accuracy, change the leading 3 to a 2.						

Example: WHT-210.

|--|

Relative Humidity Range: 0 to 100% RH.
Temperature Range: -40 to 140°F (-40 to 60°C).
Accuracy, RH: ±3% 20 to 80% RH, ±4% @ 10-20%, 80 to 90%.
Accuracy, Temp Models with 4-20 mA Temp. Output: ±0.9°F @ 72°F (±0.3°C @ 25°C).

25°C).
Accuracy, Temp Models with Passive Thermistor Temp Sensor: ±0.36°F @ 77°F (±0.2°C @ 25°C).
Hysteresis, RH: ±1%.
Repeatability, RH: ±0.1% typical.
Temperature Limits: -40 to 140°F (-40 to 60°C).
Storage Temperature: -40 to 176°F (-40 to 80°C).
Compensated Temperature Range, RH: -4 to 140°F (-20 to 60°C).
4-20 mA Loop Powered Models: Power requirements: 10-35 VDC; Output signal: 4-20 mA

4-20 mA.
4-20 mA.
4-20 mA.

0-10 V Output Models: Power requirements: 15-35 VDC or 15-29 VAC; Output signal: 0-10 V @ 5 mA max.

0-5 V Output Models: Power requirements: 10-35 VDC or 10-29 VAC; Output signal: 0-5 V @ 5 mA max.

Response Time: 15 s.

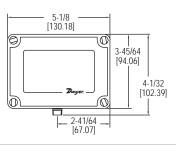
Electrical Connections: Removable screw terminal block.

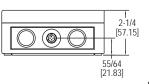
Drift: < 1% RH/year.

RH Sensor: Capacitance polymer.

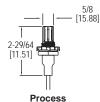
Temperature Sensor: 4-20 mA output, solid state band gap. Passive output: 10K @ 25°C thermistor (Dwyer curve A). Enclosure: ABS.

Enclosure Rating: Designed to meet NEMA 3S (IP54).


Weight: 0.3 oz (8.5 g).


Agency Approvals: CE.

IDITY/TEMPERATURE TRANSMITTER


Remote Mount, Field Replaceable Sensor Filter, Up to 16' Cable

Probe connections

The Series RH-R Humidity and Temperature Transmitter is the ideal transmitter for those applications where space is limited. The compact sensor is protected by a removable filter. It can be mounted up to 16 feet away from the weatherproof base. The Series RH-R is ideal for environmental chambers, rubber bladder burst detection and air handler applications.

FEATURES/BENEFITS

- · Cable lengths from 4 to 167
- · Remote housing allows for flexibility sensing where space may be limited

APPLICATIONS

- · Process system monitoring
- · Environmental chambers
- Air economizers

SPECIFICATIONS

Service: Dry clean air. Relative Humidity Range: 0 to 100%

Temperature Range: -40 to 140°F

(-40 to 60°C).

Accuracy: ±2% @ 10-90% Temperature Limits: -40 to 140°F

(-40 to 60°C)

Storage Temperature: -40 to 176°F

(-40 to 80°C).

Compensated Temperature Range: -4 to 140°F (-20 to 60°C)

Power Requirements: 10-35 VDC. Output Signal: 4-20 mA loop powered Response Time: Less than 15 s. Electrical Connections: Terminal block Conduit Connection: 1/2" NPT.

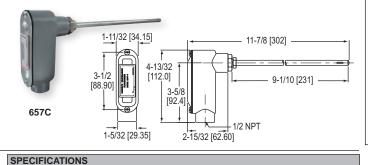
Process Connection: 1/2 NPSM. Drift: < 1%/year.

RH Sensor: Capacitance polymer

Cable Length: Up to 16' Housing Material: Polycarbonate,

aluminum enclosure.

Enclosure Rating: NEMA 4X (IP66)


MODEL CHART							
Model	Cable Length	Description	Output	Model	Cable Length	Description	Output
RHU-R004	4′	Humidity	Current	RHT-R004	4'	Humidity/temperature	Current
RHU-R008	8′	Humidity	Current	RHT-R008	8′	Humidity/temperature	Current
RHU-R012	12′	Humidity	Current	RHT-R012		Humidity/temperature	
RHU-R016	16′	Humidity	Current	RHT-R016	16´	Humidity/temperature	Current

SERIES 657

RELATIVE HUMIDITY/TEMPERATURE TRANSMITTERS

Dual Channel Design for Simultaneous 4-20 mA Output Signals

The Series 657 Relative Humidity/Temperature Transmitters provide two 4-20 mA channels to produce separate output signals for both relative humidity and temperature. These devices deliver ±2% accuracy for humidity and ±1°F for temperature measurements. Stainless steel probe can be easily mounted to most ductwork using either of the two optional kits below.

FEATURES/BENEFITS

- · Polymer film humidity and thin film RTD temperature sensors offer highly reliable and stable measurements.
- Remote mount housing offers installation flexibility (657-1)
- Rugged die-cast aluminum housing is great for industrial applications (657C-1)

APPLICATIONS

· HVAC/building control monitoring Cleanroom monitoring

MODEL CHART				
Model	odel Description			
657-1	RH/temperature transmitter			
657C-1	RH/temperature transmitter - conduit housing			

ACCESSORIES				
Model Description				
Split flange				
Mounting gland				

Service: Dry clean air.

Range: Relative humidity: 0 to 100%; Temperature: 32 to 212°F (0 to 100°C). Accuracy: Relative humidity: ±2% (10 to 90% RH), ±3% (0 to 10% and 90 to 100% RH); Temperature ±1°F (0.5°C).

Temperature Limits: 32 to 140°F (0 to 60°C).

Pressure Limits: 1 psi (.07 bar).

Compensated Temperature Range: 32 to 140°F (0 to 60°C).

Power Requirements: 10-35 VDC

Output Signal: 2 channels each 4-20 mA. Loop powered on the RH channel.

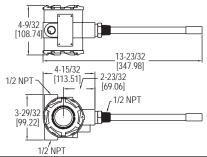
Electrical Connections: 4 screw type terminals. Mounting Orientation: Mount in any position.

Probe: 657-1: Stainless steel 5/16" x 10" (0.8 x 25.4 cm); 657C-1: 5/16" x 9-1/10"

(0.8 x 23.1 cm).

Weight: 657-1: 5.5 oz (156 g); 657C-1: 10 oz (284 g).

OPTIONS				
To order add suffix:	Description			
-NIST	NIST traceable humidity calibration certificate			
Fxample: 657C-1-NIST				



HAZARDOUS AREA HUMIDITY/TEMPERATURE TRANSMITTER

Intrinsically Safe or Explosion-Proof Models

The Series HHT Hazardous Area Humidity/Temperature Transmitter takes accurate measurements in the harshest of environments. The explosion-proof model is offered with 4-20 mA output for humidity only. The intrinsically safe version is offered with 4-20 mA output for humidity and temperature, and do require an intrinsically safe barrier to meet hazardous area approvals.

FEATURES/BENEFITS

- FM approved explosion-proof and intrinsically safe models
 Integral LCD option
- Dual temperature and relative humidity output models

APPLICATIONS

- Process monitoringOffshore HVAC monitoringDust and grain handling

MODEL CHART						
Model	Protection	Description	Display			
HHT-IU HHT-IT HHT-EU-LCD	Explosion-proof	Humidity Humidity/temperature	No No No Yes Yes			

ACCESSORIES				
Model	Description			
KFD0-SCS-EX1.55 0 A-287	Loop powered galvanic isolator Mounting bracket for pipe or surface mounting (Includes bracket and two 2" U-bolts)			
A-450	Replacement sintered filter			

SPECIFICATIONS

Relative Humidity Range: 0 to 100% RH. Temperature Range: -40 to 140°F (-40 to 60°C)

Accuracy: ±2% 10 to 90% RH, ±0.9°F at 72°F (±0.3°C at 25°C). Hysteresis: ±1%.

Hysteresis: ±1%.

Repeatability: ±0.1% typical.

Temperature Limits: -40 to 140°F (-40 to 60°C).

Storage Temperature: -40 to 176°F (-40 to 80°C).

Compensated Temperature: -40 to 140°F (-40 to 60°C).

Power Requirements: For intrinsically safe models HHT-IX, 9.5-28 VDC.

Exploision-proof models HHT-EX, 16.5-28 VDC.

Output Signal: 4-20 mA, 2 channels for humidity/temperature models (loop power

on RH). Response Time: 15 s.

Electrical Connections: Screw terminal block.

Conduit Connection: 1/2 female NPT. Drift: < 1% RH/year.

RH Sensor: Capacitance polymer.
Temperature Sensor: Solid state band gap.

Housing Material: Aluminum.

Display: Optional 2 line alpha numeric, 8 characters/line. Temperature display is C selectable

Display Resolution: RH: 0.1%; Temperature: 0.1°F (0.1°C).

Weight: 2 lb 8 oz (1134 g).

Enclosure Rating: NEMA 4X (IP66). Models HHT-EX: FM Explosion- Proof, Class I Div. 1 Group B, C, D, Class II Div. 1 Group E, F, G, Class III Div. 1; Models HHT-IX: FM Intrinsically Safe, Class I Div. 1 Group A, B, C, D, Class II Div. 1 Group E, F, G, Class III Div. 1 Group E, F, G, Class II Div

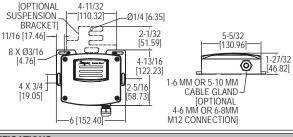
Agency Approvals: CE, FM.

• See page 366 (Model KFD0)

SERIES CDWP

CARBON DIOXIDE TRANSMITTER

NDIR CO₂ Sensor with Universal Outputs in an Industrial Housing



The Series CDWP Carbon Dioxide Transmitter accurately monitors the CO2 concentration in industrial and indoor environments to help achieve energy savings. For increased sensor life and accuracy, a single-beam dual-wavelength non-dispersive infrared (NDIR) sensor is used to eliminate light source aging effects. This sensing technology provides the highest level of accuracy compared to Automatic Baseline Correction methods, which can unintentionally shift the calibration based on CO2 levels and barometric pressure conditions.

MODEL CHART							
Example	CDWP	-05	W	-M4	-FC	CDWP-05W-M4	
Series	CDWP					Carbon dioxide transmitter	
Range		02 05 10				2000 PPM 5000 PPM 10000 PPM	
Mounting			W H			Wall mount Suspended mount	
Electrical Connection				C1 C5 M4 M6		Cable gland 1 to 6 mm cable Cable gland 5 to 10 mm cable M12 connection 4 to 6 mm cable M12 connection 6 to 8 mm cable	
Option					FC	Factory calibration certificate	

ACCESSORIES							
Model	Description						
A-CDWP-L A-CDWP-H	Replacement lid with filter material Suspended mount bracket						

SPECIFICATIONS

Sensor: Single beam, dual-wavelength

Range: CO2: 0 to 2000, 0 to 5000, or 0 to 10000 PPM (depending on model). **Accuracy:** CO₂: ± 40 PPM ±3% of

reading.

Temperature Dependence: ±8 PPM/°C

at 1100 PPM.

Non-Linearity: 16 PPM. Pressure Dependence: 0.13% of reading per mm of Hg.

Response Time: 300 s (T63)

Temperature Limits: 32 to 122°F (0 to 50°C).

Humidity Limits: 10 to 95% RH (non-

Power Requirements: 16-35 VDC or 19-28 VAC

Power Consumption: Average: 2 w; Peak: 3.75 w. Output: Current: 4-20 mA (max. 500

Voltage: 0-5 VDC or 0-10 VDC (min. 500Ω).

Enclosure Rating: IP54.
Mounting Orientation: Vertically, with electrical connections points downward. Weight: 26.24 oz (744 g). Agency Approvals: CE.

FEATURES/BENEFITS

IPS4 aluminum housing
 Gray finish tested to withstand 168 hour salt spray test
 Single-beam dual-wavelength sensor automatically corrects for aging effects

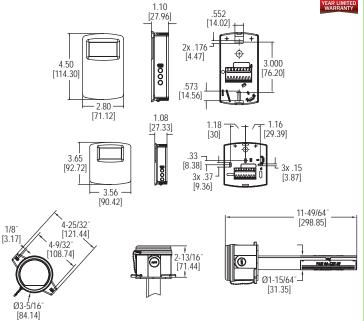
Measures unfiltered light intensity directly and eliminates error from incorrect assumptions of gas concentration in theoretical logic assumption methods
 Universal outputs to work with any building management system

APPLICATIONS

- Mechanical room
- Animal husbandry
- CO₂ refrigeration monitoring
- Greenhouses

CARBON DIOXIDE/TEMPERATURE TRANSMITTERS

NDIR CO2 Sensor, Universal Outputs, Optional Relay



European style

North American style

The Series CDT Carbon Dioxide and Temperature Transmitters accurately monitor the CO2 concentration and temperature in indoor environments to help achieve energy savings. For increased sensor accuracy, a single beam dual wavelength non-dispersive infrared (NDIR) sensor is used to automatically correct the measurement in both occupied* and unoccupied buildings against light source aging effects. The single beam dual wavelength sensor technology provides the highest level of accuracy compared to Automatic Baseline Correction methods which can unintentionally shift the calibration based on CO2 levels and barometric pressure conditions. In order to achieve a higher level of accuracy, the Series CDT includes digital barometric pressure adjustment and the ability to field-calibrate the sensor.

For applications that require visual indication, the wall mount configurations of the Series CDT can be ordered with an integral LCD display. Push-buttons are standard on all configurations of the transmitters for access to the menu structure, but wall mount configurations can be ordered without the buttons. To prevent tampering, the action of the buttons can be locked out using an internal dip switch selection.

FEATURES/BENEFITS

- Single beam dual wavelength NDIR sensor eliminates draft due to light source aging Integral passive temperature outputs reduce number of devices mounted in the space
- Service display tool available for models without an integral LED
- Optional integral display and relay output

APPLICATIONS

- Demand control ventilation in schools, office buildings, hospitals, and other indoor environments

*For buildings occupied 24 hours per day, it is recommended that calibration be verified every 6 to 12 months depending on application.

MODEL CHART							
Example	CDT	-2	N	4	4	-LCD	CDT-2N44-LCD
Series	CDT						Carbon dioxide/temperature transmitter
Range		2 5					0 to 2000 PPM CO ₂ range 0 to 5000 PPM CO ₂ range
Configuration			N E D				North American style wall mount European style wall mount Duct mount
CO ₂				4			4-20 mA / 0 to (5 or 10) VDC
Temperature Output					0 4 A B C D E F		None $4-20$ mA / 0 to (5 or 10) VDC 10 K Ω NTC thermistor type III 10 K Ω NTC thermistor type II 3 K Ω NTC thermistor Pt100 Ω RTD Pt1000 Ω RTD Pt1000 Ω RTD Ω NTC thermistor
Options						FC LCD RLY NBC	Factory calibration certificate LCD display (wall only) Relay No buttons (wall only)

SPECIFICATIONS

Sensor: Single beam, dual wavelength NDIR.
Range: CO2: 0 to 2000 or 0 to 5000 PPM (depending on model); Temperature: 32 to 122°F (0 to 50°C)

Accuracy: CO2: ±40 PPM ±3% of reading; Temperature: ±1°C @ 25°C.

Temperature Dependence: ±8 PPM/°C at 1100 PPM.

Non-Linearity: 16 PPM.

Pressure Dependence: 0.13% of reading per mm of Hg.

Response Time: 2 min for 99% step change.

Duct Air Velocity Range: 0-4000 FPM (20.32 m/s).

Temperature Limits: 32 to 122°F (0 to 50°C).

Humidity Limits: 10 to 95% RH (non-condensing).

Power Requirements: 16-35 VDC or 19-28 VAC.

Power Consumption: Average: 2 w; Peak: 3.75 w.

Output: Current: 4-20 mA (max. 500 Ω); Voltage: 0-5 VDC or 0-10 VDC (min. 500 Ω); Relay: SPST NO rated 2 A @ 30 VDC.

Weight: 4.4 oz (125 g).

Enclosure Rating: Duct mount: NEMA 4X (IP66) for housing only; Wall mount:

Agency Approvals: CE

ACCESSORIES	
Model	Description
GCK-200CO-2000CO2	Calibration gas kit includes a 99.99% nitrogen gas cylinder for calibrating the zero point and a 200 PPM CO / 2000 PPM CO ₂ gas cylinder for calibrating the span point on Dwyer's gas sensing transmitters
A-449	Remote LCD display allows remote indication of select Dwyer® wall mount transmitters for validation or certification purposes
A-449A	Remote LCD display with buttons allows remote indication and calibration of select Dwyer® wall mount transmitters for validation and certification purposes
A-CDT-KIT	Accessory kit including terminal block and power supply

LEED® is a registered trademark of the U.S. Green Building Council.

A-449

Carbon Dioxide Transmitters

3.000

MMUNICATING CARBON DIOXIDE DETECTORS

Measures CO₂, Humidity, Temperature, Temperature Set Point, and Override

European style

North American style

[114.30] [76.20] - 2.80 -[71.12] [27.33] [29.39] 3 65 [92.72] 3.56 [90.42]

[27.96]

[4.47]

The Series CDTA Communicating Carbon Dioxide Detectors combine the function of three room sensors into a single, compact housing. Parameters include carbon dioxide, humidity, temperature, and temperature set point with override. By having field selectable Modbus® and BACnet Communications, only four wires are needed for power and the communication signal. The communicating detectors can be daisy chained together to further reduce installation cost. In order to reduce the set up time, the RS-485 MAC address is set up using on board dip switches. A second set of dip switches are used to select whether output is Modbus® RTU or BACnet MS/TP communication protocols and to limit access to the set up menu.

Like our Series CDT Carbon Dioxide Transmitter, the Series CDTA uses a Single Beam Dual Wavelength Non-Dispersive Infrared (NDIR) sensor to measure the carbon dioxide level. This technology can be used in installations that will be occupied 24 hours per day. For improved accuracy, the transmitter can be field calibrated to the environmental conditions of the installation. Also, the barometric pressure can be programmed to correct for altitude. The humidity uses a capacitive polymer sensor and the temperature is measured using a $10 \text{K}\Omega$ thermistor sensor. The humidity sensor is field replaceable without the need for additional calibration.

Optional local and remote displays are available to display any of the parameters. For applications in which the building occupants aren't familiar with CO2 concentrations, the LCD can be programmed to display temperature, humidity, or temperature set point instead.

FEATURES/BENEFITS

- Digital Intelligent Temperature Compensation Algorithm (DITCA) corrects for errors due to self heating effects of combination wall sensors
- Field selectable Modbus® and BACnet communications reduces wiring
- · Single beam dual wavelength CO2 sensor
- · Replaceable humidity/temperature sensor
- · Physical hardware lockout
- · Optional remote display tool

APPLICATIONS

- · Demand control ventilation in schools, office buildings, hospitals, and other indoor environments
- LEED® certification

MODEL CHART									
Model	CO ₂ Concentration	Housing Style	Display						
CDTA-2N000	2000 PPM	North American	No						
CDTA-2N000-LCD	2000 PPM	North American	Yes						
CDTA-2E000	2000 PPM	European	No						
CDTA-2E000-LCD	2000 PPM	European	Yes						
CDTA-5N000	5000 PPM	North American	No						
CDTA-5N000-LCD	5000 PPM	North American	Yes						
CDTA-5E000	5000 PPM	European	No						
CDTA-5E000-LCD	5000 PPM	European	Yes						

OPTIONS						
To order add suffix:	Description					
-FC Factory calibration certificate						
Example: CDTA-2N000-FC						

SPECIFICATIONS

Sensor (CO2): Single beam, dual wavelength NDIR; Humidity: Capacitive polymer; Temperature: 10K Ω thermistor.

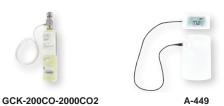
Range: CO2: 0 to 2000 or 5000 PPM CO2 (depending on model); Humidity: 0 to 100% RH; Temperature: 32 to 122°F (0 to 50°C).

Accuracy: CO2: ±40 PPM ±3% of reading; RH: ±2% (10 to 90% RH); Temperature: ±1°C @ 25°C.

Temperature Dependence (CO2): ±8 PPM / °C at 1100 PPM.

Non-Linearity (CO2): 16 PPM.

4.50


Pressure Dependence (CO₂): 0.13% of reading per mm of Hg.

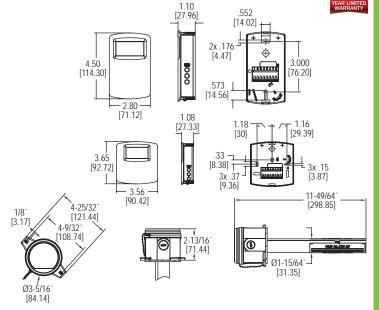
Response Time (CO2): 2 min= for 99% step change. Temperature Limits: 32 to 122°F (0 to 50°C). Humidity Limits: 10 to 95% RH (non-condensing). Power Requirements: 10-42 VDC / 10-30 VAC. Power Consumption: Average: 0.5 w; Peak: 1.2 w.

Output: 2-wire RS-485, Modbus® RTU or BACnet MS/TP communication protocol.

Weight: 4.4 oz (125 g). Enclosure Rating: IP20. Agency Approvals: BTL, CE.

ACCESSORIES	
Model	Description
GCK-200CO-2000CO2	Calibration gas kit includes a 99.99% nitrogen gas cylinder
	for calibrating the zero point and a 200 PPM CO / 2000
	PPM CO ₂ gas cylinder for calibrating the span point on
	Dwyer's gas sensing transmitters
A-449	Remote LCD display allows remote indication of
	select Dwyer® wall mount transmitters for validation or
	certification purposes
A-CDT-KIT	Accessory kit including terminal block and power supply

LEED® is a registered trademark of the U.S. Green Building Council. Modbus® is a registered trademark of Schneider Automation. Inc.



European style

North American style

Duct

Series CDTR Carbon Dioxide, Relative Humidity and Temperature Transmitters reduce the number of sensors mounted on a wall or in a duct. By combining CO₂, RH, and temperature in one device, system integrators are able to reduce installation time while lowering material cost at the same time.

Like our popular Series CDT Carbon Dioxide Transmitter, a single beam dual wavelength non-dispersive infrared (NDIR) sensor is used to automatically correct the measurement in both occupied* and unoccupied buildings against light source aging effects. In order to achieve the best possible accuracy, the Series CDTR also includes digital barometric pressure adjustment and the ability to field calibrate the sensor. Universal outputs for both carbon dioxide and relative humidity allow users to select

the transmitter output to be 4-20 mA, 0-5 VDC, or 0-10 VDC to work with virtually any building management controller. Additionally, passive thermistor or RTD sensor can be ordered for a temperature output.

For applications that require visual indication, the wall mount configurations of the Series CDTR can be ordered with an integral LCD display. The display can be configured to display temperature only, relative humidity only, CO₂ only, CO₂ and humidity, or CO₂ and temperature. Push-buttons are standard on all configurations of the transmitters for access to the menu structure. To prevent tampering, the action of the buttons can be locked out using an internal jumper selection.

FEATURES/BENEFITS

- Digital Intelligence Temperature Compensation Algorithm (DITCA™) eliminates error due to the self heating effects of wall mount combination devices.

 • Single beam dual wavelength NDIR CO₂ sensor

 • Replaceable humidity/temperature sensors

- · Physical hardware lockout
- Service display tool available for duct mount and wall mount units without an LCD
- · Relay output option

APPLICATIONS

- · Demand control ventilation in schools, office buildings, hospitals, and other indoor environments
- LEED® certification

*For buildings occupied 24 hours per day, it is recommended that calibration be verified every 6 to 12 months depending on application.

SPECIFICATIONS

Range: CO₂: 0 to 2000 or 0 to 5000 PPM (depending on model); Relative humidity: 0 to 100%; Temperature: 32 to 122°F (0 to 50°C).

Accuracy: ±40 PPM + 3% of reading (CO₂); ±2% (RH).

Temperature Dependence: ±8 PPM / °C at 1100 PPM. Non-Linearity: 16 PPM.

Pressure Dependence: 0.13% of reading per mm of Hg. Response Time: 2 minutes for 99% step change. Temperature Limits: 32 to 122°F (0 to 50°C). Duct Air Velocity Range: 0-4000 FPM (20.32 m/s)

Humidity Limits: 10 to 95% RH (non-condensing).
Power Requirements: 16-35 VDC / 19-28 VAC. Power Consumption: Average: 2 watts; Peak: 3.75 watts.

Sensor: Single beam, dual wavelength NDIR. Output: Current: 4-20 mA (max 500 Ω); Voltage: 0-5 VDC or 0-10 VDC (min 500 Ω); Relay: SPST NO 2 A @ 30 VDC; RTD or thermistor per r-t curves (depending

On model).

Weight: 5.6 oz (158.8 g).

Enclosure Rating: Duct mount: NEMA 4X (IP66) for housing only; Wall mount:

Agency Approvals: CE

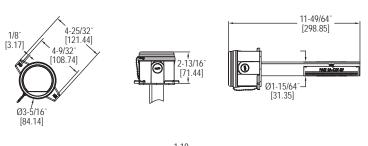
MODEL CHART								
Example	CDTR	-2	N	4	Α	4	-LCD	CDTR-2N4A4-LCD
Series	CDTR			Г				Carbon dioxide/RH/
								temperature transmitter
Range		2		Г		Г		0 to 2000 PPM CO ₂ range
_		5						0 to 5000 PPM CO ₂ range
Configuration			N					North American style wall mount
_			E					European style wall mount
			D					Duct mount
CO ₂ Output				4				4-20 mA / 0 to (5 or 10) VDC
Temperature					0			None
Output					Α			10K Ω NTC thermistor type III
					В			10K Ω NTC thermistor type II
					C			3K Ω NTC thermistor
					קן			Pt100 Ω RTD
					E			Pt1000 Ω RTD 20K Ω NTC thermistor
DII Outroot		H	Н	H	_	4		
RH Output			_	L		4		4-20 mA / 0 to (5 or 10) VDC
Options							FC	Factory calibration certificate
							LCD	LCD display (wall only)
							RLY	Relay
							INRC	No buttons (wall only)

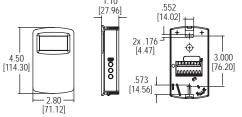
ACCESSORIES	
Model	Description
GCK-200CO-2000CO2	for calibrating the zero point and a 200 PPM CO / 2000 PPM CO2 gas cylinder for calibrating the span point on Dwyer's gas sensing transmitters
A-449	Remote LCD display allows remote indication of select Dwyer® wall mount transmitters for validation or certification purposes
A-449A	Remote LCD display with buttons allows remote indication and calibration of select Dwyer® wall mount transmitters for validation and certification purposes
A-CDT-KIT	Accessory kit including terminal block and power supply

LEED® is a registered trademark of the U.S. Green Building Council

: në :

A-449A


CARBON DIOXIDE/VOLATILE ORGANIC COMPOUND TRANSMITTERS Simultaneously Outputs Both CO2 / VOC



The Series CDTV Carbon Dioxide/Volatile Organic Compound Transmitters reduce energy cost in buildings by lowering the amount of conditioned air based on the occupancy of the space. By sensing both CO2 and VOC, the transmitter can detect fumes that may need to be exhausted during lower occupancy periods.

FEATURES/BENEFITS

- Combination VOC and CO2 outputs reduce labor and material costs
- Single beam dual wavelength NDIR CO2 sensor allows for use in spaces that may be occupied 24 hours a day
- VOC output is correlated to be equivalent to CO2 measurements
- Ventilate using ASHRAE's occupancy-based VRP Algorithm

APPLICATIONS

- HVAC applications in hospitals, schools, and commercial buildings
- Demand control ventilation
- Odor control
- · Waiting rooms or other spaces that may be occupied 24 hours a day

MODEL CHAR	Ī							
Example	CDTV	-2	D	4	Α	4	-RLY	CDTV-2D4A4-RLY
Series	CDTV							Carbon dioxide/VOC transmitter
Range		2						0 to 2000 PPM CO ₂ range
		5						0 to 5000 PPM CO ₂ range
Configuration			D					Duct
			Ν					North American style wall mount
CO ₂ Output				4				4-20 mA / 0 to (5 or 10) VDC
Temperature					0			None
Output					Α			10 KΩ NTC thermistor type III
					В			10 KΩ NTC thermistor type II
					С			3 KΩ NTC thermistor
					D			Pt100 Ω RTD
					Ε			Pt1000 Ω RTD
					F			20 KΩ NTC thermistor
VOC Output						4		4-20 mA / 0 to (5 or 10) VDC
Options							RLY	Relay
							FC	Factory calibration certificate
							LCD	LCD display (wall only)
							COC	Certificate of calibration

SPECIFICATIONS

Range: CO2: 0 to 2000 or 0 to 5000 PPM (depending on model); VOC: 0 to 2000

PPM CO₂ equivalent.

Accuracy: CO2: ±40 PPM ±3% of reading.

Temperature Dependence: ±8 PPM / °C at 1100 PPM.

Non-Linearity: CO2: 16 PPM.

Pressure Dependence: CO₂: 0.13% of reading per mm of Hg.

Response Time: CO2: 2 minutes for 99% step change; VOC: 5 minutes.

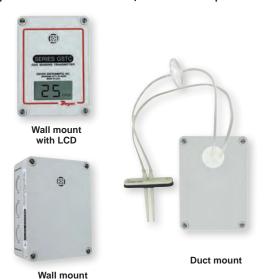
Temperature Limits: 32 to 122°F (0 to 50°C). Duct Air Velocity Range: 0-4000 FPM (20.32 m/s). Power Requirements: 16-35 VDC / 19-28 VAC.

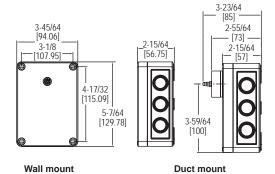
Power Consumption: Average: 2 watts; Peak: 3.75 watts.

Sensor: CO2: Single-beam, dual-wavelength NDIR; VOC: MEMS metal oxide

Output: Current: 0-20 mA, 4-20 mA, 0-10 mA, or 2-10 mA (depending on selection jumper, max 500 Ω); Voltage: 0-10 VDC, 2-10 VDC, 0-5 VDC, or 1-5 VDC

(depending on selection jumper, min 500 Ω); Relay: SPST NO 2A @ 30 VDC.


Weight: 5.6 oz (158.8 g).


Enclosure Rating: Duct mount: NEMA 4X (IP66) for housing only; Wall mount:

Agency Approvals: CE.

CARBON MONOXIDE/NITROGEN DIOXIDE GAS TRANSMITTERS High Accuracy Electrochemical Sensor, Universal Output or BACnet or Modbus® Communication Protocol Options

The Series GSTA & GSTC Carbon Monoxide/Nitrogen Dioxide Gas Transmitters monitor gas concentrations in mechanical rooms, underground parking garages and loading docks. The carbon monoxide transmitter is used to measure the exhaust of gasoline engines, while the nitrogen dioxide transmitter is used for diesel engines. The Series GSTA features field selectable current and voltage outputs while the Series GSTC features BACnet or Modbus® communication protocol, allowing gas sensing solutions that can be used with almost any building management controller.

FEATURES/BENEFITS

- Industrial grade replaceable CO or NO2 sensors
- Field selectable current or voltage output on GSTA models, and field selectable BACnet or Modbus® communication on GSTC models
- · Integral LCD display option
- Service display tool for set-up and calibration of models without a LCD

without LCD

APPLICATIONS

- · Garage or loading dock ventilation
- · Mechanical room monitoring

MODEL CHART						
Model	Description					
GSTA-C	Carbon monoxide transmitter with universal current/voltage outputs					
GSTA-N	Nitrogen dioxide transmitter with universal current/voltage outputs					
GSTA-C-LCD	Carbon monoxie transmitter with universal current/voltage outputs, LCD display					
GSTA-N-LCD	Nitrogen dioxide transmitter with universal current/voltage outputs, LCD display					
GSTA-C-D	Carbon monoxide duct mount transmitter with universal current/ voltage outputs					
GSTA-N-D	Nitrogen dioxide duct mount transmitter with universal current/ voltage outputs					
GSTC-C	Carbon monoxide transmitter with BACnet and Modbus® communication					
GSTC-N	Nitrogen dioxide transmitter with BACnet and Modbus® communication					
GSTC-C-LCD	Carbon monoxide transmitter with BACnet and Modbus® communication with integral LCD display					
GSTC-N-LCD	Nitrogen dioxide transmitter with BACnet and Modbus® communication with integral LCD display					

SPECIFICATIONS

Sensor: Field replaceable electrochemical, 4 years typical lifespan.

Range: CO: 0 to 500 PPM, NO2: 10 PPM. Output Drift: <5% per year in air.

Coverage Area: 5000 to 7500 sq ft typical.

Accuracy: CO: 2% FS, NO2: 3% FS, at the time of calibration.

Resolution: CO: 1 PPM; NO2: 0.1 PPM. Temperature Limits: -4 to 122°F (-20 to 50°C).

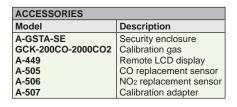
Storage Temperature: For best sensor life, 32 to 68°F (0 to 20°C). Humidity Limits: 15 to 90% RH constant; 0 to 99% RH intermittent.

Response Time: <45 s to 90% CO, <25 s to 90% NO2.

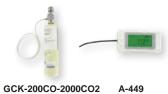
Span and Zero Adjustment: Via push-button, using optional A-449 display. Zero

only via BACnet or Modbus® communication protocol. Housing: UV resistant glass filled polycarbonate.

Output Signals: GSTA: Switch selectable 4-20 mA (loop powered), 0-5 V @ 5 mA, or 0-10 V@ 5 mA; Switch selectable 0-5 V / 1-5 V and 0-10 V / 2-10 V; Switch selectable normal or reverse output; GSTC: BACnet MS/TP, Modbus® RTU, or


Modbus® ASCII (switch selectable) communication protocol.

Power Requirements: GSTA: Current output: 10-35 VDC, Voltage output: 15-35


VDC or 15-29 VAC; GSTC: 10-36 VDC or isolated 21.6-33 VAC.

Electrical Connection: Removable terminal block, knock outs for conduit fitting. Calibration: Via pushbuttons using A-449 auxiliary display. Span gas concentration is field selectable.

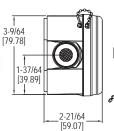
Enclosure Rating: IP64. Weight: 1 lb (0.45 kg). Agency Approvals: CE

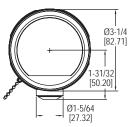
A-505

A-506

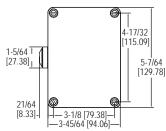
A-507

Modbus® is a registered trademark of Schneider Automation, Inc.


Gas Sensing Transmitters


CARBON MONOXIDE TRANSMITTERS

Current/Voltage Selectable Output, 200 PPM Range



The Series CMT200 Carbon Monoxide Transmitters provides a field selectable current or voltage output that is proportional to the gas concentration in underground parking garages, vehicle maintenance facilities, or mechanical rooms.

FEATURES/BENEFITS

- · Field selectable current or voltage outputs
- · Replaceable sensor Field calibration kits
- **APPLICATIONS**
 - · Garage ventilation
 - Mechanical room monitoring

MODEL CHART							
Model	Description						
	Carbon monoxide transmitter Carbon monoxide transmitter with rugged housing						

ACCESSORIES						
Model	Description					
GCK-200CO-2000CO2	Security enclosure Calibration gas Replacement carbon monoxide sensor Calibration adaptor					

SPECIFICATIONS

Sensor: Field replaceable electrochemical, 4 year typical lifespan.

Range: 0 to 200 PPM.
Coverage Area: 5000 to 7000 sq. ft. typical.
Accuracy: ±2% FS at the time of calibration.

Output Drift: <5% per year in air.
Temperature Limits: -4 to 122°F (-20 to 50°C).
Storage Temperature: For best sensor life, 32 to 68°F (0 to 20°C). Humidity Limits: 15 to 90% RH constant; 0 to 99% RH intermittent. Response Time: <45 s to 90% of final value.

Calibration: 15 turn span and zero adjustment potentiometers.

Housing: UV resistant polycarbonate.

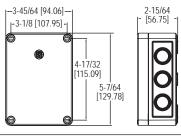
Output: Jumper selectable 4-20 mA (loop powered) or 2-10 V (load must be >50

Power Requirements: Current output: 18-28 VDC; Voltage output: 18-28 VDC/ VAC, reverse polarity protected.

Electrical Connection: Removable terminal block, includes two PG11 and one PG

16 knockouts for conduit fitting.

Weight: 0.28 lb (0.11 kg).


Agency Approvals: CE.

SERIES CMS300

CARBON MONOXIDE TRANSMITTER AND SWITCH Current/Voltage Selectable Output, Jumper Selectable SPDT Relay Contact

The Series CMS300 Carbon Monoxide Transmitter and Switch provides a field selectable current or voltage output that is proportional to the carbon monoxide concentration in underground parking garages, vehicle maintenance facilities, or mechanical rooms. An integral relay can be used for alarm conditions and is configured with preset jumper selectable ranges of 25, 60, or 150 PPM. Field calibration can be done by using Model GCK-200CO-2000CO2 calibration gas, Model A-507 calibration adapter, and the on board zero and span potentiometers.

FEATURES/BENEFITS

- Field selectable current or voltage analog outputs
 Integral SPDT relay contact for low or high alarm
 Jumper selectable alarm set points of 25, 60, or 150 PPM
- UL recognized carbon monoxide sensing element
- Field calibration kits

APPLICATIONS

- Garage or loading dock ventilationVehicle maintenance facilities
- · Mechanical room monitoring

SP	ECII	FICA	TIO	NS

Sensor: Electrochemical, 5 years typical lifespan.

Range: 0-300 PPM.
Output Drift: <5% per year in air.
Temperature Effect: ±2% over range

Coverage Area: 7,500 ft² (700 m²) or 50 ft (15 m) radius.

Accuracy: ±5 PPM or 5% of reading for 0-300 PPM (whichever is greater).

Resolution: 1 PPM.

Temperature Range: -4 to 122°F (-20

Storage Temperature: For best sensor life, 32°F to 68°F (0 to 20°C). Humidity Range: 15-90% RH constant;

0-99% RH intermittent. Response Time: <45 s to 90% of final

Calibration: 15 turn span and zero adjustment potentiometers

Housing: UV resistant glass filled polycarbonate.

Analog Output: Jumper selectable 4-20 mA (loop powered) or 2-10 V (max. load

Enclosure Rating: IP64

Weight: 1 lb (0.45 kg). Switch Type: Single-pole double-throw

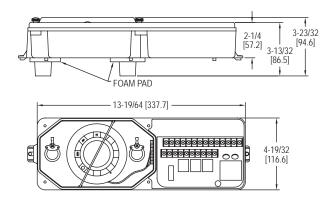
Electrical Rating: 30 VAC/VDC. N/O = 5 A. N/C = 3 A.

Set Point: Jumper selectable 25, 60, or 150 PPM

Set Point Differential/Hysteresis: 3%

Relay Action: Factory set for direct acting

Agency Approvals: Sensor is UL recognized component for ANSI/UL-2034, UL-2075, E340403, CE.


MODEL (MODEL CHART			
Model	Description			
CMS300	Carbon monoxide transmitter and switch			

ACCESSORIES					
Model	Description				
GCK-200CO-2000CO2	Security enclosure Calibration gas Calibration adapter				

DUCT SMOKE DETECTOR Early Smoke Detection in HVAC Systems

The Series SL-2000 Duct Smoke Detector is crucial for early detection of smoke and products of combustion present within HVAC ductwork. This series can be utilized in many different types of applications including commercial, industrial, and residential. The unit is designed to not only alarm when smoke is detected, but will also utilize relays to disable fans and blowers. The series comes complete with technician friendly "No-Tools Required" features to make installation and servicing simple and efficient.

FEATURES/BENEFITS

- Operates in air speeds of 100 to 4000 ft/min
- Transparent cover to view detector head LED
- · Patented "No-Tools Required" front or rear loading and removing sampling/exhaust
- · Integrated smoke test port

APPLICATIONS

- · Early smoke detection in ductwork
- Commercial/Industrial/Residential HVAC
- · BAS automation

SPECIFICATIONS

Sensor Type: Photoelectric or Ionization. Air Velocity Range: 100 to 4000 ft/min.

Ambient Temperature: SL-2000-N: 32°F to 158°F (0°C to 70°C); SL-2000-P: 32°F to 140°F (0°C to 60°C).

Humidity Limits: 85 ±5 % RH (@32 ±2°C; 86 ±3.6°F) Non-condensing/Non-

freezing.

Power Requirements: Standby: 230 VAC (12 mA), 115 VAC (22 mA), 24 VAC (55 mA), or 24 VDC (14 mA); Alarm: 230 VAC (18 mA), 115 VAC (32mA), 24 VAC (190 mA), or 24 VDC (68 mA).

Electrical Rating: Alarm contacts: 2 sets form "C" rated at 10 A resistive @ 115 VAC and 1 set form "A" rated at 2 A; Trouble contacts: 1 set form "C" rated at 10 A

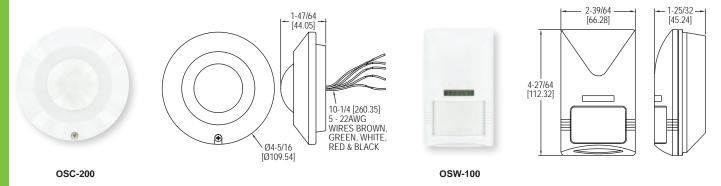
Electrical Connections: Screw terminals.

Enclosure: Grey plastic backbox, clear plastic cover (Makrolon 94V-0).

Enclosure Rating: SL-2000: NEMA 1; WP-2000: NEMA 3R.

Radioactive Element: For SL-2000-N (Ionization) americium 241; 0.9 Micro-curie; Do not expose to corrosive atmospheres.

Weight: 2.5 lbs.


Approvals: cULus (UL 268A) file # S2829, CSFM listed (3240-1004:105), MEA accepted (73-92-E; VOL. 27).

MODEL CHART				
Model	Sensor Type			
SL-2000-N	Conventional, 4 wire, universal voltage, ionization duct smoke detector			
SL-2000-P	Conventional, 4 wire, universal voltage, photoelectric duct smoke detector			

ACCESSORIES				
Model	Sensor Type			
FAST TUBE	Sectional, polycarbonate sampling tube, bag of (3) 24" tubes			
TG-2500	Test gas for SL-2000 models			
WP-2000	Weatherproof enclosure for SL-2000 models			
55000-225APO	Ionization replacement sensor for SL-2000-N			
55000-328APO	Photoelectric replacement sensor for SL-2000-P			

Dwyer. **MODEL OSC-200 & OSW-100**

OCCUPANCY SENSORS Wide Viewing Angle, Easy To Install

The Model OSC-200 Occupancy Sensors help to automate building control systems. A spherical Fresnel lens provides a 360° detection zone with the use of infrared technology.

The Model OSW-100 Occupancy Sensor is an infrared sensor designed to help automate building control systems. The Model OSW-100 has a wide 110° viewing angle to capture movement up to 49.2' (15 m) away.

FEATURES/BENEFITS

• Delay processor suppresses switch activation during momentary occupancy

APPLICATIONS

· Lighting control

Occupancy Sensors

• Building energy conservation

MODEL CHART				
Model	Description			
	Omnidirectional occupancy sensor			
OSW-100	Wall mount occupancy sensor			

SPECIFICATIONS

Infrared Sensor: Dual element.

Range: OSC-200: 34.4' (10.5 m) diameter at 13.8' (4.2 m) mount height; OSW-

100: 49.2' (15 m).

Detectable Speed: 0.33 to 9.8 ft/s (0.1 to 3.0 m/s). Control Output Rating: SPDT, 0.2 A @ 30 VDC.

Ambient Operating Temperature: -4 to 140°F (-20 to 60°C). Power Consumption: Standby: 5 mA; Operating: 18 mA.

Mounting Height: OSC-200: 7.9 to 13.8' (2.4 to 4.2 m); OSW-100: 5.9 to 11.8' (1.8

to 3.6 m).

Power Requirements: 22-26 VAC/DC.

Weight: OSC-200: 2.4 oz (68 g); OSW-100: 3.2 oz (90.7 g).

Agency Approvals: CE.

PRESSURE CONVERSION CHART

in/H ₂ O	P.S.I.	in/Hg	mm/H ₂ O	mm/Hg	kg/cm²	bar	mbar	Pa	kPa
.1 .2	.0036	.0073	2.534 5.067	.1863	.0002	.0002	.4964	24.82 49.64	.0248
.6	.0144	.0293	10.13	.7452 1.118	.0010	.0010	1.489	99.28 148.9	.0993
1.0	.0289	.0588	20.34 25.41	1.496 1.868	.0020	.0020	1.992 2.489	199.2 248.9	.1992
2 3 4	.0722 .1083 .1444	.1470 .2205 .2940	50.81 76.22 101.62	3.736 5.604 7.472	.0051 .0076 .0102	.0050 .0075 .0099	4.978 7.467 9.956	497.8 746.7 995.6	.4978 .7476 .9956
5	.1804	.3673	127.0 152.4	9.335 11.203	.0127 .0152	.0124	12.44 14.93	1244 1493	1.244 1.493
6 7 8	.2526	.5143	177.8	13.072 14.940	.0178	.0174	17.42	1742	1.742
9	.3248	.6613 .7348	228.6 254.0	16.808 18.676	.0228	.0224	22.39 24.88	2239 2488	2.239 2.488
11 12	.3970 .4331	.8083 .8818	279.4 304.8	20.544 22.412	.0279 .0304	.0274 .0299	27.37 29.86	2737 2986	2.737 2.986
13 14 15	.4692 .5053 .5414	.9553 1.029 1.102	330.2 355.6 381.0	24.280 26.148 28.016	.0330 .0355 .0381	.0324 .0348 .0373	32.35 34.84 37.33	3235 3484 3733	3.235 3.484 3.733
16	.6136	1.176	406.4 431.8	29.879	.0406	.0398	39.81	3981 4231	3.981 4.231
18 19	.6496 .6857	1.322	457.2 482.6	33.616 35.484	.0457	.0448	44.79 47.28	4479 4728	4.479 4.728
20 21	.7218 .7579	1.470 1.543	508.0 533.4	37.352 39.22	.0507 .0533	.0498 .0523	49.77 52.26	4977 5226	4.977 5.226
22	.7940 .8301	1.616 1.690	558.8 584.2	41.09 42.96	.0558	.0547	54.74 57.23	5474 5723	5.474 5.723
24 25	.8662 .9023	1.764 1.837	609.6 635.0	44.82 46.69	.0609 .0634	.0597 .0622	59.72 62.21	5972 6221	5.972 6.221
26 27 28	.9384 .9745 1.010	1.910	660.4 685.8 710.8	48.56 50.43 52.26	.0660 .0685 .0710	.0647 .0672 .0696	64.70 67.19 69.64	6470 6719 6964	6.470 6.719 6.964
29 30	1.047 1.083	2.056 2.132 2.205	736.8 762.2	54.18 56.04	.0736 .0761	.0722	72.19 74.67	7219 7467	7.219 7.467
31 32	1.119	2.278	787.5 812.8	57.91 59.77	.0787	.0772	77.15 79.63	7715 7963	7.715 7.963
33 34	1.191 1.227	2.425 2.498	836.2 863.5	61.63 63.49	.0837	.0821	82.12 84.60	8212 8460	8.212 8.460
35 36	1.263 1.299	2.571 2.645	888.9 914.2	65.36 67.22	.0888	.0871 .0896	87.08 89.56	8708 8956	8.708 8.956
37 38	1.335	2.718 2.791	939.5 964.9	69.08 70.95	.0938	.0920	92.04 94.53	9204 9453	9.204 9.453
39 40	1.408 1.444	2.876 2.940	990.9 1016	72.86 74.72	.0990 .1015	.0971 .0996	97.08 99.56	9708 9956	9.708 9.956
41 42	1.480 1.516	3.013 3.086	1042 1067	76.59 78.45	.1040 .1066	.1020 .1045	102.0 104.5	10204 10452	10.20 10.45
43	1.552 1.588	3.160 3.233	1118	80.31 82.18	.1091	.1070	107.0 109.5	10701	10.70 10.95
45 46	1.624 1.660	3.306 3.378	1143 1168	84.04 85.90	.1142	.1120	112.0 114.5	11197 11445	11.20 11.44
47 48 49	1.696 1.732 1.768	3.453 3.526 3.600	1194 1219 1244	87.76 89.63 91.49	.1192 .1218 .1243	.1169 .1194 .1219	116.9 119.4 121.9	11694 11942 12190	11.69 11.94 12.19
50 51	1.804 1.841	3.673 3.748	1270 1296	93.35 95.27	.1268 .1294	.1244 .1269	124.4 126.9	12438 12693	12.44 12.69
52 53	1.877 1.913	3.822 3.895	1321 1346	97.13 98.99	.1320	.1294	129.4 131.9	12941	12.94 13.19
54 55	1.949 1.985	3.968 4.041	1372 1397	100.8 102.7	.1370 .1395	.1344	134.4 136.9	13438 13686	13.44 13.69
56 57 58	2.021 2.057 2.093	4.115 4.188 4.261	1422 1448 1473	104.6 106.4 108.3	.1421 .1146 .1471	.1393 .1418 .1443	139.3 141.8 144.3	13934 14182 14431	13.93 14.18 14.43
59 60	2.129 2.165	4.335 4.408	1498 1524	110.2 112.0	.1497	.1468	146.8 149.3	14679 14927	14.68 14.93
61 62	2.202	4.483 4.556	1550 1575	113.9	.1548	.1518	151.8	15182	15.18
63 64	2.274 2.310	4.630 4.703	1600 1626	117.7 119.5	.1599 .1624	.1568	156.8 159.3	15679 15927	15.68 15.93
65 66	2.346 2.382	4.776 4.850	1651 1676	121.4 123.3	.1649 .1674	.1618 .1642	161.8 164.2	16175 16423	16.18 16.42
67 68	2.418 2.454	4.923 4.996	1702 1727	125.1 127.0	.1700 .1725	.1667 .1692	166.7 169.2	16672 16920	16.67 16.92
69 70	2.490 2.526	5.070 5.143	1752 1778	128.8 130.7	.1750 .1776	.1717	171.7 174.2	17168 17416	17.17 17.42
71 72 73	2.562 2.598 2.635	5.216 5.290 5.365	1803 1828 1854	132.6 134.4 136.4	.1801 .1826 .1852	.1766 .1791 .1817	176.6 179.1 181.7	17664 17912 18168	17.66 17.91 18.17
74 75	2.635 2.671 2.707	5.438 5.511	1854 1880 1905	136.4 138.2 140.1	.1852 .1878 .1903	.1842	181.7 184.2 186.6	18416 18664	18.17 18.42 18.66
76 77	2.743 2.779	5.585	1930 1930	140.1 141.9 143.8	.1928	.1891	189.1 191.6	18912	18.91
78 79	2.815 2.851	5.731 5.805	1981 2006	145.7 147.5	.1979 .2004	.1941 .1966	194.1 196.6	19409 19657	19.41 19.66
80 81 82	2.887 2.923 2.959	5.878 5.951 6.024	2032 2057 2082	149.4 151.2 153.1	.2030 .2055 .2080	.1991 .2015 .2040	199.1 201.5 204.0	19905 20153 20402	19.90 20.15 20.40
83 84	2.996 3.032	6.100 6.173	2108 2134	155.0 156.9	.2106 .2131	.2066 .2091	206.6 209.1	20657 20905	20.66 20.90
85 86	3.068 3.104	6.246	2159 2184	158.8 160.6	.2157	.2115	211.5 214.0	21153	21.15
87 88	3.140 3.176	6.393 6.466	2210 2265	162.5 164.4	.2207 .2233	.2165 .2190	216.5 219.0	21650 21898	21.65 21.90
89 90 91	3.212 3.248 3.284	6.450 6.613 6.686	2260 2286 2311	166.2 168.1 169.9	.2258 .2283 .2309	.2215 .2239 .2264	221.5 223.9 226.4	22146 22394 22642	22.15 22.39 22.64
92 93	3.204 3.320 3.356	6.760 6.833	2336 2362	171.8 173.7	.2334	.2289	228.9 231.4	22890 23139	22.89 23.14
94 95	3.392 3.429	6.906 6.981	2387 2413	175.7 175.5 177.4	.2384	.2339	233.9 236.4	23387	23.14 23.39 23.64
96 97	3.456 3.501	7.055 7.128	2438 2464	179.3 181.2	.2436 .2461	.2389 .2414	238.9 241.4	23890 24138	23.89 24.14
98 99	3.537 3.573	7.201 7.275	2489 2514	183.0 184.9	.2486 .2512	.2439 .2464	243.9 246.4	24387 24635	24.39 24.64
100	3.609	7.348	2540	186.8	.2537	.2488	248.8	24883	24.88

1.1 30.45 2.240 773.4 56.89 .0773 .0758 75.84 72.4 84.37 62.06 .0844 .0827 82.74 8 1.4 843.7 62.06 .0844 .0827 82.74 8 8 1.4 38.75 2.850 984.3 72.40 .0984 .0965 96.52 9 6.52 9 1.6 1.452 3.054 1055 77.57 1.055 .1034 103.4 10 10 10 10 10 10 10 10 3.094 .0984 .0965 96.52 9 10 10 3.4 10 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 10 3.4 11 11 11 3.2 10 55.58 3.665 1266	8895 6.895 6.895 6.895 6.895 8.9652 9.652
1.3 35.98 2.647 914.0 67.23 .0914 .0896 89.63 8 1.4 38.75 2.850 984.3 72.40 .0984 .0965 96.52 96.52 1.6 44.29 3.258 1125 82.74 .1055 .1034 103.4 10.4 1.7 47.06 3.461 1195 82.74 .1125 .1103 110.3 110.3 110.3 1.8 49.82 3.665 1266 93.09 .1266 .1241 124.1 12 11 117.2 117.2 117.2 117.2 117.2 117.2 11 118.9 .1336 .1336 .1336 .1310 131.0 137.9 13 2.1 158.13 4.276 1476 108.6 .1476 .1448 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 14 157.7 158.	9863 8.963 1652 9.652 9.652 9.652 9.652 9.652 9.652 11.034 1030 11.03
1.6 44.29 3.258 1125 82.74 .1125 .1103 110.3 11 1.7 47.06 3.461 1195 87.92 .1195 .1172 117.2	10340 10.34 11.03 1720 11.72 11.72 11.72 11.72 11.73 11.03 17.90 13.79 14.48 1170 15.17 15.86 15.86 17.93 18.62 18
1.7 47.06 3.461 1195 87.92 .1195 .1172 117.2 1124 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 124.1 148.8 144	720 11.72 12.41 1100 13.10 1790 13.79 13.79 14.48 14.48 14.48 14.48 15.55 16.5
1.9 52.59 3.686 1336 98.26 1.336 1.310 131.0 12.0 135.6 4.072 1406 103.4 1.406 .1379 137.9 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 144.8 145.7 165.5 165.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.5 162.	1100 13.10 13.79 1480 14.48 1170 15.17 15.86 16.55 16.55 16.55 16.55 16.55 17.93 18.62 18.
2.1 58.13 4.276 1476 108.6 1.476 1.448 144.8 144.8 144.8 12.2 60.90 4.479 1547 113.8 1.547 1.1517 151.7 152.2 60.90 4.479 1547 118.9 1.617 .1517 151.7 152.1 152.1 155.5 158.6 148.7 148.8 148.6 179.3 179.	14480 14.48 15.17 1170 15.17 15.860 16.55 16.55 16.55 16.55 16.55 17.24
2.4 66.43 4.886 1687 124.1 1.667 1.655 165.5 1 2.5 69.20 5.090 1758 1.29.3 1.758 1.724 172.4 12.2 1 2.6 71.97 5.294 1828 134.5 1.828 1.793 179.3 17 2.7 74.74 5.497 1898 139.6 1.898 1.862 186.2 186.2 2.8 77.51 5.701 1969 144.8 1.968 1.930 193.0 18 2.9 80.27 5.904 2039 150.0 2039 1.999 199.0 193.0 18 2206.6 2206.8 2206.8 2206.8 2206.8 2216.8 2227.5 2275 227	16.55 16.55 17.24 17.24 17.93 17.93 18.62 19.30 19.99 20.68 21.37 2060 22.76 22.75 24.40 23.44 13.0 24.13 24.82 25.51 25.51
2.6 71,97 5.294 1828 134.5 .1828 .1793 179.3 17 2.7 74.74 5.497 1898 139.6 .1898 .1862 186.2 186.2 2.8 77.51 5.701 1969 144.8 .1988 .1930 193.0 18 2.9 80.27 5.904 2039 150.0 .2039 .1999 199.9<	17.93 18.62 18.62 19.30 19.90 19.90 19.90 19.90 19.90 20.68 370 21.37 20.60 22.06 27.50 22.75 4440 23.44 4130 24.13 8220 24.82 5510 25.51
2.8 77.51 5.701 1969 144.8 .1968 .1930 193.0 182.9 2.9 80.27 5.904 2039 150.0 .2039 .1999 199.9 <td>19.30 19.30 19.99 19.99 20.68 370 21.37 2060 22.06 1750 22.75 1440 23.44 24.13 1820 24.82 1510 25.51</td>	19.30 19.30 19.99 19.99 20.68 370 21.37 2060 22.06 1750 22.75 1440 23.44 24.13 1820 24.82 1510 25.51
3.1 85.81 6.312 2180 160.3 2180 2137 213.7 22 3.2 88.58 6.515 2250 165.5 .2250 .2206 220.6 227.5 228.3 280.1 241.3 241.3 241.3 241.3 241.3 241.3 241.3 242.3 242.0 268.9 268.9 268.9 268.9 268.9 262.0 262.0 262.0 262.0	370 21.37 2060 22.06 2750 22.75 3440 23.44 1130 24.13 1820 24.82 5510 25.51
3.4 94.11 6.922 2390 175.8 2390 2344 234.4 3 3.5 98.88 7.126 2461 181.0 2461 2413 241.3 243.3 3.6 99.65 7.330 2531 186.2 .2531 .2482 248.2 24 3.7 102.4 7.535 2601 191.3 .2601 .2551 255.1 255.1 255.1 256.0 26 26 26.0 26 26 26.0 26 26 26.0 26 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 28 28	3440 23.44 1130 24.13 1820 24.82 1510 25.51
3.6 99.65 7.330 2531 186.2 2.531 2.482 248.2 248.3 3.7 102.4 7.535 2601 191.3 2601 2551 255.1 253.1 3.8 105.2 7.737 2672 196.5 2672 2620 262.0 <	820 24.82 510 25.51
3.9 108.0 7.940 2742 201.7 2.742 2.689 268.9 26.8 2 26.9 2.812 2.758 275.8 27.8 24.1 113.5 8.348 2.883 212.0 2.883 2.827 2.82.7	200 26 20
4.1 113.5 8.348 2883 212.0 2883 2827 282.7 28 4.2 116.3 8.551 2953 217.2 2.953 2896 289.6 286 4.3 119.0 8.775 3023 222.4 .3023 .2965 296.5 296.5 4.4 121.8 8.958 3094 227.5 .3094 .303.4 303.4 303.4 4.5 124.6 9.162 2164 232.7 .3164 .3103 3103 313	890 26.89
4.3 119.0 8.775 3023 222.4 .3023 .2965 296.5 25 4.4 121.8 8.958 3094 227.5 .3094 .3034 303.4 303.4 303.4 303.4 33	7580 27.58 3270 28.27 3960 28.96
4.5 124.6 9.162 2164 232.7 .3164 .3103 310.3 31	650 29.65
	0338 30.34 030 31.03 720 31.72
4.7 130.1 9.569 3304 243.1 .3304 .3240 324.0 32 4.8 132.9 9.773 3375 248.2 .3375 .3310 331.0 33	2400 32.40 3100 33.10
5.0 138.4 10.18 3515 258.6 .3515 .3447 344.7 34	3780 33.78 470 34.47 5160 35.16
5.3 146.7 10.79 3726 274.1 .3726 .3654 365.4 36	35.85 540 36.54
5.4 149.5 10.99 3797 279.3 .3797 .3723 372.3 37 5.5 152.2 11.20 3876 284.4 .3867 .3792 379.2 37	7230 37.23 7920 37.92
5.7 157.8 11.60 4008 294.8 .4007 .3930 393.0 39	38.61 300 39.30 39.99 39.99
5.9 163.3 12.01 4148 305.1 .4148 .4068 406.8 40 6.0 166.1 12.22 4218 310.3 .4218 .4137 413.7 41	0680 40.68 370 41.37
6.2 171.6 12.62 4359 320.6 .4359 .4275 427.5 42	2060 42.06 2750 42.75 3440 43.44
6.5 179.9 13.23 4570 336.1 .4570 .4482 448.2 44	130 44.13 820 44.82 5500 45.50
6.7 185.5 13.64 4711 346.5 .4710 .4619 461.9 46	6190 46.19 6880 46.88
6.9 191.0 14.05 4851 356.8 .4851 .4757 475.7 47 7.0 193.8 14.25 4922 362.0 .4921 .4826 482.6 48	7570 47.57 3260 48.26
7.2 199.3 14.66 5062 372.3 .5062 .4964 496.4 49	950 48.95 9640 49.64
7.4 204.8 15.07 5203 382.7 .5203 .5102 510.2 51	0330 50.33 020 51.02 710 51.71
7.6 210.4 15.47 5343 393.0 .5343 .5240 524.0 52 7.8 215.9 15.88 5484 403.4 .5484 .5378 537.8 53	2400 52.40 3780 53.78 3160 55.16
8.2 227.0 16.70 5765 424.1 .5765 .5654 565.4 56 8.4 232.5 17.10 5906 434.4 .5906 .5792 579.2 57	5540 56.54 920 57.92
8.8 243.6 17.92 6187 455.1 .6187 .6067 606.7 60	9290 59.29 9670 60.67 9050 62.05
9.2 254.7 18.73 6468 475.8 .6468 .6343 634.3 63	63.43 810 64.81
9.6 265.7 19.54 6750 496.5 .6749 .6619 661.9 66	190 66.19 570 67.57
11.0 304.5 22.40 7734 568.9 .7734 .7584 758.4 75	950 68.95 840 75.84 740 82.74
13.0 359.8 26.47 9140 672.3 .9140 .8963 896.3 98 14.0 387.5 28.50 9843 724.0 .9843 .9652 965.2 96	8630 89.63 8520 96.52 400 101.4
15.0 415.2 30.54 10550 775.7 1.055 1.034 1034 103 16.0 442.9 32.58 11250 827.4 1.125 1.103 1103 110	3400 103.4 3300 110.3 2200 117.2
18.0 498.2 36.65 12660 930.9 1.265 1.241 1241 1241 1241 1310	100 124.1 000 131.0
20.0	900 137.9 800 144.8
22.0	700 151.7 3600 158.6
24.0 664.3 48.86 16870 1241 1.687 1.655 1655 1655 1655 25.0 692.0 50.90 17580 1293 1.758 1.724 1724 1724	5500 165.5 2400 172.4

CONVERSION FACTORS

P.S.I. x 27.71 = in. H₂O
P.S.I. x 2.036 = in. H_g
P.S.I. x 703.1 = mm/H₂O
P.S.I. x 68.95 = mbar
P.S.I. x 51.75 = mm/H_g
P.S.I. x 68.95 = kPa
P.S.I. x 0.0703 = kg/cm²
P.S.I. x 6.895 = kPa

Note: Conversion factors rounded.

Manufacturing Excellence Since 1931

pressure • temperature • test & data • air quality

flow • level • process control • valves

dwyer-inst.com

Phone: (219) 879-8000 | Fax: (219) 872-9057

